A261881
Minimal nested palindromic primes with seed 0.
Original entry on oeis.org
0, 101, 31013, 3310133, 933101339, 1093310133901, 30109331013390103, 333010933101339010333, 33330109331013390103333, 993333010933101339010333399, 104993333010933101339010333399401, 7810499333301093310133901033339940187
Offset: 1
As a triangle:
........0
.......101
......31013
.....3310133
....933101339
..1093310133901
30109331013390103
-
s = {0}; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s]], Reverse[#]] &[IntegerDigits[#]]]] &]; AppendTo[s, tmp], {15}]; s
(* Peter J. C. Moses, Sep 01 2015 *)
A262627
Minimal nested base-2 palindromic primes with seed 0.
Original entry on oeis.org
0, 101, 11001010011, 101100101001101, 10101011001010011010101, 111010101100101001101010111, 1111101010110010100110101011111, 101111111010101100101001101010111111101, 110101111111010101100101001101010111111101011
Offset: 1
a(3) = 11001010011 =A117697(15) is the least prime having a(2) = 101 in its middle. Triangular format:
0
101
11001010011
101100101001101
10101011001010011010101
111010101100101001101010111
1111101010110010100110101011111
-
s = {0}; base = 2; z = 20; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s]], Reverse[#]] &[IntegerDigits[#, base]], base]] &];
AppendTo[s, FromDigits[IntegerDigits[tmp, base]]], {z}]; s (* A262627 *)
Map[FromDigits[ToString[#], base] &, s] (* A262628 *)
(* Peter J. C. Moses, Sep 01 2015 *)
Showing 1-2 of 2 results.
Comments