A261836 Number T(n,k) of compositions of n into distinct parts where each part i is marked with a word of length i over a k-ary alphabet whose letters appear in alphabetical order and all k letters occur at least once in the composition; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 1, 1, 0, 3, 10, 7, 0, 3, 15, 21, 9, 0, 5, 40, 96, 92, 31, 0, 11, 183, 832, 1562, 1305, 403, 0, 13, 266, 1539, 3908, 4955, 3090, 757, 0, 19, 549, 4281, 14791, 26765, 26523, 13671, 2873, 0, 27, 1056, 10902, 50208, 124450, 178456, 148638, 66904, 12607
Offset: 0
Examples
T(3,2) = 10: (matrices and corresponding marked compositions are given) [2] [1] [2 0] [0 2] [1 0] [0 1] [1 1] [1 1] [1 0] [0 1] [1] [2] [0 1] [1 0] [0 2] [2 0] [1 0] [0 1] [1 1] [1 1] 3aab, 3abb, 2aa1b, 1b2aa, 1a2bb, 2bb1a, 2ab1a, 1a2ab, 2ab1b, 1b2ab. Triangle T(n,k) begins: 1; 0, 1; 0, 1, 1; 0, 3, 10, 7; 0, 3, 15, 21, 9; 0, 5, 40, 96, 92, 31; 0, 11, 183, 832, 1562, 1305, 403; 0, 13, 266, 1539, 3908, 4955, 3090, 757; 0, 19, 549, 4281, 14791, 26765, 26523, 13671, 2873;
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, i, p, k) option remember; `if`(i*(i+1)/2
n, 0, b(n-i, i-1, p+1, k)*binomial(i+k-1, k-1)))) end: T:= (n, k)-> add(b(n$2, 0, k-i)*(-1)^i*binomial(k, i), i=0..k): seq(seq(T(n, k), k=0..n), n=0..12); -
Mathematica
b[n_, i_, p_, k_] := b[n, i, p, k] = If[i*(i+1)/2
n, 0, b[n-i, i-1, p+1, k]*Binomial[i+k-1, k-1]]]]; T[n_, k_] := Sum[b[n, n, 0, k-i]*(-1)^i*Binomial[k, i], {i, 0, k}]; Table[ Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Feb 21 2016, after Alois P. Heinz *)
Formula
T(n,k) = Sum_{i=0..k} (-1)^i * C(k,i) * A261835(n,k-i).
Comments