cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261837 Number of compositions of n into distinct parts where each part i is marked with a word of length i over an n-ary alphabet whose letters appear in alphabetical order.

Original entry on oeis.org

1, 1, 3, 46, 195, 1876, 51114, 322764, 3644355, 43916950, 2427338628, 18277511616, 272107762602, 3507931293608, 62485721142820, 5810222040368296, 53025343448015811, 913540133071336044, 13871534219465464002, 253750203721349071650, 5307815745011707670820
Offset: 0

Views

Author

Alois P. Heinz, Sep 02 2015

Keywords

Crossrefs

Main diagonal of A261835.

Programs

  • Maple
    b:= proc(n, i, p, k) option remember;
          `if`(i*(i+1)/2n, 0, b(n-i, i-1, p+1, k)*binomial(i+k-1, k-1))))
        end:
    a:= n-> b(n$2, 0, n):
    seq(a(n), n=0..30);
  • Mathematica
    b[n_, i_, p_, k_] := b[n, i, p, k] =
         If[i (i + 1)/2 < n, 0, If[n == 0, p!, b[n, i - 1, p, k] +
         If[i > n, 0, b[n - i, i - 1, p + 1, k]*Binomial[i + k - 1, k - 1]]]];
    a[n_] := b[n, n, 0, n];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jul 12 2021, after Alois P. Heinz *)

Formula

a(n) = A261835(n,n).