A261849 Number of squares in an n X n grid that are enclosed in a circle of diameter n (having the same center as the grid).
0, 0, 1, 4, 9, 16, 21, 32, 45, 60, 69, 88, 101, 120, 145, 164, 185, 216, 241, 276, 293, 332, 365, 392, 437, 476, 509, 556, 593, 648, 681, 732, 785, 832, 885, 936, 989, 1052, 1109, 1176, 1225, 1288, 1353, 1428, 1489, 1560, 1625, 1696, 1781, 1860, 1933, 2016, 2085, 2180, 2241, 2340, 2425, 2512, 2609, 2700, 2793, 2876, 2973, 3080, 3173
Offset: 1
Links
- Yi Yang, Table of n, a(n) for n = 1..10000
- V. J. Pohjola ("Olavi Kivalo") and Jaakko Himberg ("Jaska"), 8545.Lukujono16
- Giovanni Resta, Representation of a(3)-a(11)
Programs
-
Mathematica
c[n_, i_, j_] := Ceiling[Sqrt[(n - 2 i)^2 + (n - 2 j)^2]]; t1[q_] := Take[q, 1]; t2[p_] := Take[p, -1]; p2[r_] := Power[r, 2]; area = {}; (Do[ a = {}; (Do[ If[c[n, i, j] == n || c[n, i, j] == n - 1 || c[n, i, j] == n - 2, AppendTo[a, {i, j}]], {i, 1, Ceiling[n/2 (1 - Sqrt[2]/2)]}, {j, i, Floor[n/2]}]); b = (n - 2*Map[t2, Flatten[Map[t1, GatherBy[a, First]], 1]]); sum1 = 4*Apply[Plus, Drop[b, -1]]; sum2 = Map[p2, Last[b]]; AppendTo[area, (sum1 + sum2)], {n, 2, 100}]); Flatten[{0, area}] a[1] = 0; a[n_] := If[EvenQ[n], 4 Sum[ Floor[ Sqrt[(n/2)^2 - k^2]], {k, n/2}], 4 Floor[n/2] - 3 + 4 Sum[Floor[-1/2 + Sqrt[(n/2)^2 - (k + 1/2)^2]], {k, n/2 - 1}]]; Array[a, 60] (* Giovanni Resta, Sep 10 2015 *)
Comments