cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261849 Number of squares in an n X n grid that are enclosed in a circle of diameter n (having the same center as the grid).

Original entry on oeis.org

0, 0, 1, 4, 9, 16, 21, 32, 45, 60, 69, 88, 101, 120, 145, 164, 185, 216, 241, 276, 293, 332, 365, 392, 437, 476, 509, 556, 593, 648, 681, 732, 785, 832, 885, 936, 989, 1052, 1109, 1176, 1225, 1288, 1353, 1428, 1489, 1560, 1625, 1696, 1781, 1860, 1933, 2016, 2085, 2180, 2241, 2340, 2425, 2512, 2609, 2700, 2793, 2876, 2973, 3080, 3173
Offset: 1

Views

Author

V.J. Pohjola, Sep 03 2015

Keywords

Comments

a(1)=0 by definition.
The idea behind the sequence was originally proposed at http://www.sanaristikot.net on Aug 19 2015 by Jaska Himberg.

Crossrefs

Programs

  • Mathematica
    c[n_, i_, j_] := Ceiling[Sqrt[(n - 2 i)^2 + (n - 2 j)^2]];
    t1[q_] := Take[q, 1]; t2[p_] := Take[p, -1]; p2[r_] := Power[r, 2];
    area = {}; (Do[
      a = {}; (Do[
        If[c[n, i, j] == n || c[n, i, j] == n - 1 || c[n, i, j] == n - 2,
         AppendTo[a, {i, j}]], {i, 1, Ceiling[n/2 (1 - Sqrt[2]/2)]}, {j, i,
         Floor[n/2]}]);
      b = (n - 2*Map[t2, Flatten[Map[t1, GatherBy[a, First]], 1]]);
      sum1 = 4*Apply[Plus, Drop[b, -1]]; sum2 = Map[p2, Last[b]];
      AppendTo[area, (sum1 + sum2)], {n, 2, 100}]);
    Flatten[{0, area}]
    a[1] = 0; a[n_] := If[EvenQ[n], 4 Sum[ Floor[ Sqrt[(n/2)^2 - k^2]], {k, n/2}], 4 Floor[n/2] - 3 + 4 Sum[Floor[-1/2 + Sqrt[(n/2)^2 - (k + 1/2)^2]], {k, n/2 - 1}]]; Array[a, 60] (* Giovanni Resta, Sep 10 2015 *)