A261854 Number of compositions of n into distinct parts where each part i is marked with a word of length i over a ternary alphabet whose letters appear in alphabetical order and all letters occur at least once in the composition.
7, 21, 96, 832, 1539, 4281, 10902, 76020, 117585, 306639, 634686, 1537206, 9013319, 13793487, 32005392, 64458596, 138068775, 278292429, 1622912266, 2321086080, 5318890971, 10014128239, 20784037248, 38209197732, 80154402633, 415073903937, 593664848658
Offset: 3
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 3..2500
Crossrefs
Column k=3 of A261836.
Programs
-
Maple
b:= proc(n, i, p, k) option remember; `if`(i*(i+1)/2
n, 0, b(n-i, i-1, p+1, k)*binomial(i+k-1, k-1)))) end: a:= n->(k->add(b(n$2, 0, k-i)*(-1)^i*binomial(k, i), i=0..k))(3): seq(a(n), n=3..40);
Formula
a(n) = A261836(n,3):
Comments