A261859 Number of compositions of n into distinct parts where each part i is marked with a word of length i over an octonary alphabet whose letters appear in alphabetical order and all letters occur at least once in the composition.
2873, 66904, 4351388, 20331080, 157483354, 901563512, 6174438308, 180660353288, 511805155863, 2507827775824, 10089884785056, 44796664928048, 200977872433624, 5149800722642960, 11741438872834432, 48645418597510928, 159659060979170671, 593940633500376248
Offset: 8
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 8..2000
Crossrefs
Column k=8 of A261836.
Programs
-
Maple
b:= proc(n, i, p, k) option remember; `if`(i*(i+1)/2
n, 0, b(n-i, i-1, p+1, k)*binomial(i+k-1, k-1)))) end: a:= n->(k->add(b(n$2, 0, k-i)*(-1)^i*binomial(k, i), i=0..k))(8): seq(a(n), n=8..30);
Formula
a(n) = A261836(n,8).
Comments