A261860 Number of compositions of n into distinct parts where each part i is marked with a word of length i over a nonary alphabet whose letters appear in alphabetical order and all letters occur at least once in the composition.
12607, 1850013, 13188465, 141059073, 1056825045, 9244127655, 358616974839, 1185100976313, 6776480736882, 31512728488918, 161603593094034, 844675656403032, 26805281002135578, 67485379090772970, 310715577607315770, 1129828504295753862, 4665897718158585321
Offset: 9
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 9..2000
Crossrefs
Column k=9 of A261836.
Programs
-
Maple
b:= proc(n, i, p, k) option remember; `if`(i*(i+1)/2
n, 0, b(n-i, i-1, p+1, k)*binomial(i+k-1, k-1)))) end: a:= n->(k->add(b(n$2, 0, k-i)*(-1)^i*binomial(k, i), i=0..k))(9): seq(a(n), n=9..30);
Formula
a(n) = A261836(n,9).
Comments