A261861 Number of compositions of n into distinct parts where each part i is marked with a word of length i over a denary alphabet whose letters appear in alphabetical order and all letters occur at least once in the composition.
333051, 4822430, 79871395, 832560780, 9644631215, 503145835150, 1977105518235, 13353202808060, 72444344358890, 431802346970780, 2638310862477610, 102808411342614000, 286995037461236030, 1470656290936993540, 5931973064021096010, 27203387338778029760
Offset: 10
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 10..2000
Crossrefs
Column k=10 of A261836.
Programs
-
Maple
b:= proc(n, i, p, k) option remember; `if`(i*(i+1)/2
n, 0, b(n-i, i-1, p+1, k)*binomial(i+k-1, k-1)))) end: a:= n->(k->add(b(n$2, 0, k-i)*(-1)^i*binomial(k, i), i=0..k))(10): seq(a(n), n=10..30);
Formula
a(n) = A261836(n,10).
Comments