A261866 Expansion of (G(-x) / chi(-x))^2 in powers of x where chi() is a Ramanujan theta function and G() is a Rogers-Ramanujan function.
1, 0, 2, 2, 5, 6, 13, 16, 28, 38, 60, 80, 122, 162, 234, 312, 436, 576, 789, 1032, 1386, 1802, 2381, 3070, 4008, 5128, 6618, 8414, 10752, 13576, 17210, 21592, 27162, 33890, 42340, 52538, 65244, 80544, 99458, 122208, 150126, 183634, 224527, 273480, 332898
Offset: 0
Keywords
Examples
G.f. = 1 + 2*x^2 + 2*x^3 + 5*x^4 + 6*x^5 + 13*x^6 + 16*x^7 + 28*x^8 + ... G.f. = q + 2*q^41 + 2*q^61 + 5*q^81 + 6*q^101 + 13*q^121 + 16*q^141 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..2500
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ (QPochhammer[ x^4, -x^5] QPochhammer[ -x, -x^5] QPochhammer[ x, x^2])^-2, {x, 0, n}]; a[ n_] := SeriesCoefficient[ Product[ (1 - x^k)^-{0, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 0, 0}[[Mod[k, 20, 1]]], {k, n}], {x, 0, n}];
-
PARI
{a(n) = if( n<0, 0, polcoeff( prod(k=1, n, (1 - x^k + x * O(x^n))^-[ 0, 0, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 0][k%20 + 1]), n))};
-
PARI
{a(n) = if( n<0, 0, polcoeff( sum(k=0, (sqrtint(4*n + 1) - 1)\2, x^(k^2 + k) / prod(i=1, 2*k, 1 - x^i, 1 + x * O(x^(n - k^2-k))))^2, n))};
Formula
Euler transform of period 20 sequence [ 0, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 0, 0, ...].
Expansion of (f(x^4, x^6) / f(-x^2, -x^3))^2 in powers of x where f(, ) is Ramanujan's general theta function.
Expansion of (f(-x, -x^9) * f(-x^8, -x^12) / (f(-x) * f(-x^20)))^2 in powers of x where f(, ) is Ramanujan's general theta function.
Expansion of (f(-x^2, x^3) / phi(-x^2))^2 in powers of x where phi() is a Ramanujan theta function.
G.f.: (Sum_{k>=0} x^(k^2 + k) / ((1 - x) * (1 - x^2) * ... * (1 - x^(2*k))))^2.
a(n) = A147699(5*n).
Convolution square of A122134.
Comments