cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261866 Expansion of (G(-x) / chi(-x))^2 in powers of x where chi() is a Ramanujan theta function and G() is a Rogers-Ramanujan function.

Original entry on oeis.org

1, 0, 2, 2, 5, 6, 13, 16, 28, 38, 60, 80, 122, 162, 234, 312, 436, 576, 789, 1032, 1386, 1802, 2381, 3070, 4008, 5128, 6618, 8414, 10752, 13576, 17210, 21592, 27162, 33890, 42340, 52538, 65244, 80544, 99458, 122208, 150126, 183634, 224527, 273480, 332898
Offset: 0

Views

Author

Michael Somos, Sep 03 2015

Keywords

Comments

Rogers-Ramanujan functions: G(q) (see A003114), H(q) (A003106).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x^2 + 2*x^3 + 5*x^4 + 6*x^5 + 13*x^6 + 16*x^7 + 28*x^8 + ...
G.f. = q + 2*q^41 + 2*q^61 + 5*q^81 + 6*q^101 + 13*q^121 + 16*q^141 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x^4, -x^5] QPochhammer[ -x, -x^5] QPochhammer[ x, x^2])^-2, {x, 0, n}];
    a[ n_] := SeriesCoefficient[ Product[ (1 - x^k)^-{0, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 0, 0}[[Mod[k, 20, 1]]], {k, n}], {x, 0, n}];
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod(k=1, n, (1 - x^k + x * O(x^n))^-[ 0, 0, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 0][k%20 + 1]), n))};
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum(k=0, (sqrtint(4*n + 1) - 1)\2, x^(k^2 + k) / prod(i=1, 2*k, 1 - x^i, 1 + x * O(x^(n - k^2-k))))^2, n))};

Formula

Euler transform of period 20 sequence [ 0, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 0, 0, ...].
Expansion of (f(x^4, x^6) / f(-x^2, -x^3))^2 in powers of x where f(, ) is Ramanujan's general theta function.
Expansion of (f(-x, -x^9) * f(-x^8, -x^12) / (f(-x) * f(-x^20)))^2 in powers of x where f(, ) is Ramanujan's general theta function.
Expansion of (f(-x^2, x^3) / phi(-x^2))^2 in powers of x where phi() is a Ramanujan theta function.
G.f.: (Sum_{k>=0} x^(k^2 + k) / ((1 - x) * (1 - x^2) * ... * (1 - x^(2*k))))^2.
a(n) = A147699(5*n).
Convolution square of A122134.