A261875 Decimal expansion of the coefficient 'gamma' (see formula) appearing in Otter's result concerning the asymptotics of T_n, the number of non-isomorphic rooted trees of order n.
2, 6, 8, 1, 1, 2, 8, 1, 4, 7, 2, 6, 7, 1, 1, 2, 2, 3, 8, 5, 7, 7, 3, 2, 8, 7, 8, 3, 7, 0, 3, 9, 3, 7, 0, 9, 3, 5, 4, 1, 7, 5, 3, 4, 7, 2, 0, 1, 1, 6, 1, 6, 6, 3, 5, 2, 7, 4, 9, 7, 0, 2, 5, 8, 8, 6, 4, 0, 2, 8, 4, 0, 3, 6, 5, 1, 6, 5, 3, 4, 5, 0, 6, 7, 2, 3, 9, 2, 0, 8, 5, 5, 8, 7, 7, 5, 9, 9, 1, 1
Offset: 1
Examples
2.68112814726711223857732878370393709354175347201161663527497...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.6 Otter's tree enumeration constants, p. 296.
Programs
-
Mathematica
digits = 100; max = 250; Clear[s, a]; s[n_, k_] := s[n, k] = a[n + 1 - k] + If[n < 2*k, 0, s[n-k, k]]; a[1] = 1; a[n_] := a[n] = Sum[a[k]*s[n-1, k]*k, {k, 1, n-1}]/(n-1); A[x_] := Sum[a[k]*x^k, {k, 0, max}]; APrime[x_] := Sum[k*a[k]*x^(k-1), {k, 0, max}]; eq = Log[c] == 1 + Sum[A[c^-k]/k, {k, 2, max}]; alpha = c /. FindRoot[eq, {c, 3}, WorkingPrecision -> digits+5]; beta = (1+Sum[APrime[alpha^(-k)]/alpha^k, {k, 2, max}])^(3/2)/Sqrt[2*Pi]; gamma = 2^(2/3)*Pi^(1/6)*beta^(1/3) * Sqrt[alpha]; RealDigits[gamma, 10, digits] // First