cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261875 Decimal expansion of the coefficient 'gamma' (see formula) appearing in Otter's result concerning the asymptotics of T_n, the number of non-isomorphic rooted trees of order n.

Original entry on oeis.org

2, 6, 8, 1, 1, 2, 8, 1, 4, 7, 2, 6, 7, 1, 1, 2, 2, 3, 8, 5, 7, 7, 3, 2, 8, 7, 8, 3, 7, 0, 3, 9, 3, 7, 0, 9, 3, 5, 4, 1, 7, 5, 3, 4, 7, 2, 0, 1, 1, 6, 1, 6, 6, 3, 5, 2, 7, 4, 9, 7, 0, 2, 5, 8, 8, 6, 4, 0, 2, 8, 4, 0, 3, 6, 5, 1, 6, 5, 3, 4, 5, 0, 6, 7, 2, 3, 9, 2, 0, 8, 5, 5, 8, 7, 7, 5, 9, 9, 1, 1
Offset: 1

Views

Author

Jean-François Alcover, Sep 04 2015

Keywords

Examples

			2.68112814726711223857732878370393709354175347201161663527497...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.6 Otter's tree enumeration constants, p. 296.

Crossrefs

Programs

  • Mathematica
    digits = 100; max = 250; Clear[s, a]; s[n_, k_] := s[n, k] = a[n + 1 - k] + If[n < 2*k, 0, s[n-k, k]]; a[1] = 1; a[n_] := a[n] = Sum[a[k]*s[n-1, k]*k, {k, 1, n-1}]/(n-1); A[x_] := Sum[a[k]*x^k, {k, 0, max}]; APrime[x_] := Sum[k*a[k]*x^(k-1), {k, 0, max}]; eq = Log[c] == 1 + Sum[A[c^-k]/k, {k, 2, max}]; alpha = c /. FindRoot[eq, {c, 3}, WorkingPrecision -> digits+5]; beta = (1+Sum[APrime[alpha^(-k)]/alpha^k, {k, 2, max}])^(3/2)/Sqrt[2*Pi]; gamma = 2^(2/3)*Pi^(1/6)*beta^(1/3) * Sqrt[alpha]; RealDigits[gamma, 10, digits] // First

Formula

Lim_{n->infinity} T_n*n^(3/2)/alpha^n = (beta/(2 Pi))^(1/3) = (1/(4 Pi alpha))^(1/2)*gamma, where alpha is A051491 and beta is A086308.
gamma = 2^(2/3)*Pi^(1/6)*beta^(1/3)*sqrt(alpha).