A261876 Number of ordered ways to write n as x^2 + y^2 + z^2 + w^2 with (5*x^2+7*y^2+9*z^2)*y*z a square, where x,y,z,w are nonnegative integers with z > 0.
1, 3, 2, 1, 4, 5, 1, 3, 5, 5, 4, 2, 4, 7, 2, 1, 9, 9, 4, 4, 7, 5, 1, 5, 6, 12, 7, 1, 10, 9, 2, 3, 10, 9, 7, 5, 4, 11, 3, 5, 14, 10, 4, 4, 10, 9, 3, 2, 8, 17, 10, 4, 11, 18, 6, 7, 9, 6, 11, 2, 10, 15, 4, 1, 15, 17, 4, 9, 13, 10
Offset: 1
Keywords
Examples
a(4) = 1 since 4 = 0^2 + 0^2 + 2^2 + 0^2 with 2 > 0 and (5*0^2+7*0^2+9*2^2)*0*2 = 0^2. a(7) = 1 since 7 = 2^2 + 1^2 + 1^2 + 1^2 with 1 > 0 and (5*2^2+7*1^2+9*1^2)*1*1 = 6^2. a(23) = 1 since 23 = 2^2 + 1^2 + 3^2 + 3^2 with 3 > 0 and (5*2^2+7*1^2+9*3^2)*1*3 = 18^2. a(647) = 1 since 647 = 13^2 + 1^2 + 6^2 + 21^2 with 6 > 0 and (5*13^2+7*1^2+9*6^2)*1*6 = 84^2. a(863) = 1 since 863 = 1^2 + 23^2 + 18^2 + 3^2 with 18 > 0 and (5*1^2+7*23^2+9*18^2)*23*18 = 1656^2.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Refining Lagrange's four-square theorem, arXiv:1604.06723 [math.GM], 2016.
- Zhi-Wei Sun, Refine Lagrange's four-square theorem, a message to Number Theory List, April 26, 2016.
Crossrefs
Programs
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]] Do[r=0;Do[If[SQ[n-x^2-y^2-z^2]&&SQ[y*z(5x^2+7y^2+9z^2)],r=r+1],{x,0,Sqrt[n-1]},{y,0,Sqrt[n-1-x^2]},{z,1,Sqrt[n-x^2-y^2]}];Print[n," ",r];Continue,{n,1,70}]
Comments