cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261876 Number of ordered ways to write n as x^2 + y^2 + z^2 + w^2 with (5*x^2+7*y^2+9*z^2)*y*z a square, where x,y,z,w are nonnegative integers with z > 0.

Original entry on oeis.org

1, 3, 2, 1, 4, 5, 1, 3, 5, 5, 4, 2, 4, 7, 2, 1, 9, 9, 4, 4, 7, 5, 1, 5, 6, 12, 7, 1, 10, 9, 2, 3, 10, 9, 7, 5, 4, 11, 3, 5, 14, 10, 4, 4, 10, 9, 3, 2, 8, 17, 10, 4, 11, 18, 6, 7, 9, 6, 11, 2, 10, 15, 4, 1, 15, 17, 4, 9, 13, 10
Offset: 1

Views

Author

Zhi-Wei Sun, May 01 2016

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 0, and a(n) = 1 only for n = 4^k*m (k = 0,1,2,... and m = 1, 7, 23, 647, 863).
(ii) For each triple (a,b,c) = (1,8,20), (3,5,15), (6,14,4), (7,29,5), (18,38,18), (39,81,51), (42,98,14), any natural number can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that x*y*(a*x^2+b*y^2+c*z^2) is a square.
For more refinements of Lagrange's four-square theorem, see arXiv:1604.06723.

Examples

			a(4) = 1 since 4 = 0^2 + 0^2 + 2^2 + 0^2 with 2 > 0 and (5*0^2+7*0^2+9*2^2)*0*2 = 0^2.
a(7) = 1 since 7 = 2^2 + 1^2 + 1^2 + 1^2 with 1 > 0 and (5*2^2+7*1^2+9*1^2)*1*1 = 6^2.
a(23) = 1 since 23 = 2^2 + 1^2 + 3^2 + 3^2 with 3 > 0 and (5*2^2+7*1^2+9*3^2)*1*3 = 18^2.
a(647) = 1 since 647 = 13^2 + 1^2 + 6^2 + 21^2 with 6 > 0 and (5*13^2+7*1^2+9*6^2)*1*6 = 84^2.
a(863) = 1 since 863 = 1^2 + 23^2 + 18^2 + 3^2 with 18 > 0 and (5*1^2+7*23^2+9*18^2)*23*18 = 1656^2.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
    Do[r=0;Do[If[SQ[n-x^2-y^2-z^2]&&SQ[y*z(5x^2+7y^2+9z^2)],r=r+1],{x,0,Sqrt[n-1]},{y,0,Sqrt[n-1-x^2]},{z,1,Sqrt[n-x^2-y^2]}];Print[n," ",r];Continue,{n,1,70}]