cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261878 Number of distinct fractional parts of the sums 1/j+...+1/k with 1 <= j <= k <= n, where the fractional part of x is given by x - floor(x).

Original entry on oeis.org

1, 2, 4, 7, 11, 15, 21, 28, 36, 45, 55, 64, 76, 89, 103, 118, 134, 151, 169, 187, 207, 228, 250, 273, 297, 322, 348, 375, 403, 432, 462, 493, 525, 558, 592, 627, 663, 700, 738, 777, 817, 858, 900, 943, 987, 1032, 1078, 1125, 1173, 1222, 1272, 1323, 1375, 1428, 1482, 1537, 1593, 1650, 1708, 1767
Offset: 1

Views

Author

Zhi-Wei Sun, Sep 09 2015

Keywords

Comments

Conjecture: (i) If 1/j+..+1/k and 1/s+...+1/t have the same fractional part with 0 < min{2,k} <= j <= k, 0 < min{2,t} <= s <= t and j <= s, but the ordered pairs (j,k) and (s,t) are different, then we have 1/j+...+1/k = 1+1/s+...+1/t; moreover, either (j,k) = (2,6) and (s,t) = (4,5), or (j,k) = (2,4) and (s,t) = (12,12), or (j,k) = (2,11) and (s,t) =(5,12), or (j,k) = (3,20) and (s,t) = (7,19).
(ii) Let a > b >= 0 and m > 0 be integers with gcd(a,b) = 1 < max{a,m}. Then the numbers sum_{i=j,...,k}1/(a*i-b)^m with 1 <= j <= k and (j > 1 if k > a-b = 1) have pairwise distinct fractional parts.
Clearly, part (i) of the conjecture implies that a(n) = n*(n-1)/2 - 3 for all n > 20.
See also A261993 for a similar conjecture involving primes.

Examples

			a(3) = 4 since the four numbers 1/1, 1/2, 1/3, 1/2+1/3 = 5/6 have pairise distinct fractional parts.
a(6) = 15 since 1/1 and those 1/j+..+1/k with 1 < j <= k <= 6 and (j,k) not equal to (2,6), have pairwise distinct fractional parts, but 1/2+1/3+1/4+1/5+1/6 = 29/20 and 1/4+1/5 = 9/20 have the same fractional part.
		

Crossrefs

Programs

  • Mathematica
    frac[x_]:=x-Floor[x]
    H[n_]:=HarmonicNumber[n]
    S[n_]:=Table[frac[H[n]-H[m-1]],{m,1,n}]
    T[1]:=S[1]
    T[n_]:=Union[T[n-1],S[n]]
    Do[Print[n," ",Length[T[n]]],{n,1,60}]