A261891 Least k>0 such that n AND (k*n) = 0, where AND stands for the binary AND operator.
2, 2, 4, 2, 2, 4, 8, 2, 2, 2, 12, 4, 10, 8, 16, 2, 2, 2, 4, 2, 2, 12, 24, 4, 4, 10, 12, 8, 10, 16, 32, 2, 2, 2, 4, 2, 2, 4, 40, 2, 2, 2, 12, 12, 10, 24, 48, 4, 4, 4, 4, 10, 34, 12, 56, 8, 18, 10, 12, 16, 42, 32, 64, 2, 2, 2, 4, 2, 2, 4, 8, 2, 2, 2, 12, 4, 10
Offset: 1
Examples
For n=7: +---+-------------+ | k | 7 AND (k*7) | | | (in binary) | +---+-------------+ | 1 | 111 | | 2 | 110 | | 3 | 101 | | 4 | 100 | | 5 | 11 | | 6 | 10 | | 7 | 1 | | 8 | 0 | +---+-------------+ Hence, a(7) = 8.
Links
- Paul Tek, Table of n, a(n) for n = 1..16384
Programs
-
Mathematica
Table[k = 1; While[BitAnd[k n, n] != 0, k++]; k, {n, 60}] (* Michael De Vlieger, Sep 06 2015 *)
-
PARI
a(n) = {k=1; while (bitand(n, k*n), k++); k;} \\ Michel Marcus, Sep 06 2015
-
Perl
sub a { my $n = shift; my $k = 1; while ($n & ($k*$n)) { $k++; } return $k; }
-
Python
from itertools import count def A261891(n): return next(k for k in count(2) if not n&k*n) # Chai Wah Wu, Jul 19 2024
Comments