A261896 Consider the 2^n values of A162795(i)/i^2 for 2^n <= i < 2^(n+1); a(n) = value of i where this quantity is minimized.
3, 5, 11, 25, 43, 89, 179, 361, 727, 1459, 2921, 5843, 11689, 23383, 46769, 93543, 187093, 374193, 748391, 1496785, 2993575, 5987157, 11974321, 23948647, 47897299, 95794607, 191589221, 383178449, 766356903, 1532713827, 3065427663, 6130855333, 12261710675, 24523421357, 49046842723
Offset: 0
Keywords
References
- D. Applegate, O. E. Pol and N. J. A. Sloane, The toothpick sequence and other sequences from cellular automata, Congressus Numerantium, v. 206 (2010) 157-191.
Links
- D. Applegate, O. E. Pol and N. J. A. Sloane, The toothpick sequence and other sequences from cellular automata; also available at arXiv:1004.3036v2, [math.CO], 2010.
- Steven R. Finch, Toothpicks and Live Cells, July 21, 2015. [Cached copy, with permission of the author]
- N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
Programs
-
Mathematica
T = 1; t[0] = 0; t[1] = 1; lst = {1}; Do[twon = 2^n; Tmin = 1; imin = 1; Do[If[i==twon, t[i]=twon, t[i]=2*t[i-twon]+t[i-twon+1]; If[OddQ[i], T=T+t[i]; Ttest=T/(i*i)]; If[Ttest
Comments