A261933 The first of two consecutive positive integers the sum of the squares of which is equal to the sum of the squares of seventeen consecutive positive integers.
40, 91, 2743, 6364, 192004, 445423, 13437571, 31173280, 940438000, 2181684211, 65817222463, 152686721524, 4606265134444, 10685888822503, 322372742188651, 747859530853720, 22561485688071160, 52339481270937931, 1578981625422792583, 3663015829434801484
Offset: 1
Examples
40 is in the sequence because 40^2 + 41^2 = 5^2 + 6^2 + ... + 21^2.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,70,-70,-1,1).
Programs
-
Mathematica
LinearRecurrence[{1,70,-70,-1,1},{40,91,2743,6364,192004},20] (* Harvey P. Dale, Oct 17 2015 *)
-
PARI
Vec(-x*(40*x^4+51*x^3-148*x^2+51*x+40)/((x-1)*(x^4-70*x^2+1)) + O(x^40))
Formula
G.f.: -x*(40*x^4+51*x^3-148*x^2+51*x+40) / ((x-1)*(x^4-70*x^2+1)).
Comments