cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261955 Start with a single equilateral triangle for n=0; for the odd n-th generation add a triangle at each expandable side of the triangles of the (n-1)-th generation (this is the "side to side" version); for the even n-th generation use the "vertex to side" version; a(n) is the number of triangles added in the n-th generation.

Original entry on oeis.org

1, 3, 6, 15, 12, 24, 15, 33, 21, 45, 39, 72, 36, 78, 39, 87, 45, 99, 63, 126, 60, 132, 63, 141, 69, 153, 87, 180, 84, 186, 87, 195, 93, 207, 111, 234, 108, 240, 111, 249, 117, 261, 135, 288, 132, 294, 135, 303, 141, 315, 159
Offset: 0

Views

Author

Kival Ngaokrajang, Sep 06 2015

Keywords

Comments

See a comment on V-V and V-S at A249246.
There are a total of 16 combinations as shown in the table below:
+-------------------------------------------------------+
| Even n-th version V-V S-V V-S S-S |
+-------------------------------------------------------+
| Odd n-th version |
| S-S A261953 A261954 a(n) A008486 |
+-------------------------------------------------------+
Note: V-V = vertex to vertex, S-V = side to vertex,
V-S = vertex to side, S-S = side to side.

Crossrefs

Programs

  • PARI
    {e=12; o=24; print1("1, 3, 6, 15, ", e, ", ", o, ", "); for(n=6, 100, if (Mod(n,2)==0, if (Mod(n,8)==6, e=e+3); if (Mod(n,8)==0, e=e+6); if (Mod(n,8)==2, e=e+18); if (Mod(n,8)==4, e=e-3); Print1(e, ", "), if (Mod(n,8)==7, o=o+9); if (Mod(n,8)==1, o=o+12); if (Mod(n,8)==3, o=o+27); if (Mod(n,8)==5, o=o+6); print1(o, ", ")))}

Formula

Conjectures from Colin Barker, Sep 10 2015: (Start)
a(n) = a(n-2)+a(n-8)-a(n-10) for n>13.
G.f.: -(3*x^13+9*x^12-15*x^11-13*x^10-9*x^9-5*x^8-9*x^7-3*x^6-9*x^5-6*x^4-12*x^3-5*x^2-3*x-1) / ((x-1)^2*(x+1)^2*(x^2+1)*(x^4+1)).
(End)