A261955 Start with a single equilateral triangle for n=0; for the odd n-th generation add a triangle at each expandable side of the triangles of the (n-1)-th generation (this is the "side to side" version); for the even n-th generation use the "vertex to side" version; a(n) is the number of triangles added in the n-th generation.
1, 3, 6, 15, 12, 24, 15, 33, 21, 45, 39, 72, 36, 78, 39, 87, 45, 99, 63, 126, 60, 132, 63, 141, 69, 153, 87, 180, 84, 186, 87, 195, 93, 207, 111, 234, 108, 240, 111, 249, 117, 261, 135, 288, 132, 294, 135, 303, 141, 315, 159
Offset: 0
Keywords
Links
- Kival Ngaokrajang, Illustration of initial terms
Programs
-
PARI
{e=12; o=24; print1("1, 3, 6, 15, ", e, ", ", o, ", "); for(n=6, 100, if (Mod(n,2)==0, if (Mod(n,8)==6, e=e+3); if (Mod(n,8)==0, e=e+6); if (Mod(n,8)==2, e=e+18); if (Mod(n,8)==4, e=e-3); Print1(e, ", "), if (Mod(n,8)==7, o=o+9); if (Mod(n,8)==1, o=o+12); if (Mod(n,8)==3, o=o+27); if (Mod(n,8)==5, o=o+6); print1(o, ", ")))}
Formula
Conjectures from Colin Barker, Sep 10 2015: (Start)
a(n) = a(n-2)+a(n-8)-a(n-10) for n>13.
G.f.: -(3*x^13+9*x^12-15*x^11-13*x^10-9*x^9-5*x^8-9*x^7-3*x^6-9*x^5-6*x^4-12*x^3-5*x^2-3*x-1) / ((x-1)^2*(x+1)^2*(x^2+1)*(x^4+1)).
(End)
Comments