A261958 Start with a single square for n=0; for the odd n-th generation add a square at each expandable vertex of the squares of the (n-1)-th generation (this is the "vertex to vertex" version); for the even n-th generation use the "side to vertex" version; a(n) is the number of squares added in the n-th generation.
1, 4, 12, 16, 24, 32, 28, 36, 32, 44, 44, 56, 56, 72, 60, 76, 64, 84, 76, 96, 88, 112, 92, 116, 96, 124, 108, 136, 120, 152, 124, 156, 128, 164, 140, 176, 152, 192, 156, 196, 160, 204, 172, 216, 184, 232, 188, 236, 192, 244, 204, 256, 216
Offset: 0
Keywords
Links
- Kival Ngaokrajang, Illustration of initial terms
Programs
-
PARI
{e=12; o=4; print1("1, ", o, ", ", e, ", "); for(n=3, 100, if (Mod(n,2)==0, if (Mod(n,8)==4, e=e+12); if (Mod(n,8)==6, e=e+4); if (Mod(n,8)==0, e=e+4); if (Mod(n,8)==2, e=e+12); print1(e, ", "), if (Mod(n,8)==3, o=o+12); if (Mod(n,8)==5, o=o+16); if (Mod(n,8)==7, o=o+4); if (Mod(n,8)==1, o=o+8); print1(o, ", ")))}
Formula
Conjectures from Colin Barker, Sep 10 2015: (Start)
a(n) = a(n-2)+a(n-8)-a(n-10) for n>10.
G.f.: (x^10+4*x^9+3*x^8+4*x^7+4*x^6+16*x^5+12*x^4+12*x^3+11*x^2+4*x+1) / ((x-1)^2*(x+1)^2*(x^2+1)*(x^4+1)).
(End)
Comments