cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261958 Start with a single square for n=0; for the odd n-th generation add a square at each expandable vertex of the squares of the (n-1)-th generation (this is the "vertex to vertex" version); for the even n-th generation use the "side to vertex" version; a(n) is the number of squares added in the n-th generation.

Original entry on oeis.org

1, 4, 12, 16, 24, 32, 28, 36, 32, 44, 44, 56, 56, 72, 60, 76, 64, 84, 76, 96, 88, 112, 92, 116, 96, 124, 108, 136, 120, 152, 124, 156, 128, 164, 140, 176, 152, 192, 156, 196, 160, 204, 172, 216, 184, 232, 188, 236, 192, 244, 204, 256, 216
Offset: 0

Views

Author

Kival Ngaokrajang, Sep 06 2015

Keywords

Comments

See a comment on V-V and V-S at A249246.
The overlap rules for the expansion are: (i) overlap within generation is allowed. (ii) overlap of different generations is prohibited.
There are a total of 16 combinations as shown in the table below:
+-------------------------------------------------------+
| Even n-th version V-V S-V V-S S-S |
+-------------------------------------------------------+
| Odd n-th version |
| V-V A008574 a(n) ... ... |
| S-V ... A008574 A008574 ... |
| V-S ... A008574 A008574 ... |
| S-S ... ... ... A008574 |
+-------------------------------------------------------+
Note: V-V = vertex to vertex, S-V = side to vertex,
V-S = vertex to side, S-S = side to side.

Crossrefs

Programs

  • PARI
    {e=12; o=4; print1("1, ", o, ", ", e, ", "); for(n=3, 100, if (Mod(n,2)==0, if (Mod(n,8)==4, e=e+12); if (Mod(n,8)==6, e=e+4); if (Mod(n,8)==0, e=e+4); if (Mod(n,8)==2, e=e+12); print1(e, ", "), if (Mod(n,8)==3, o=o+12); if (Mod(n,8)==5, o=o+16); if (Mod(n,8)==7, o=o+4); if (Mod(n,8)==1, o=o+8); print1(o, ", ")))}

Formula

Conjectures from Colin Barker, Sep 10 2015: (Start)
a(n) = a(n-2)+a(n-8)-a(n-10) for n>10.
G.f.: (x^10+4*x^9+3*x^8+4*x^7+4*x^6+16*x^5+12*x^4+12*x^3+11*x^2+4*x+1) / ((x-1)^2*(x+1)^2*(x^2+1)*(x^4+1)).
(End)