cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261962 Number of compositions of n such that no part equals any of its two immediate predecessors.

Original entry on oeis.org

1, 1, 1, 3, 3, 5, 11, 15, 23, 37, 67, 101, 165, 265, 419, 691, 1123, 1789, 2909, 4657, 7515, 12183, 19657, 31635, 51101, 82449, 132989, 214623, 346485, 558587, 901399, 1454949, 2347157, 3787197, 6111131, 9858931, 15908393, 25669125, 41416849, 66826277
Offset: 0

Views

Author

Alois P. Heinz, Sep 06 2015

Keywords

Crossrefs

Column k=2 of A261960.
Cf. A261961.

Programs

  • Maple
    b:= proc(n, i, j) option remember; `if`(n=0, 1, add(
          `if`(k=i or k=j, 0, (t-> b(t, `if`(k>t, 0, k),
          `if`(i>t, 0, i)))(n-k)), k=1..n))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..50);
  • Mathematica
    b[n_, i_, j_] := b[n, i, j] = If[n == 0, 1, Sum[If[k == i || k == j, 0, Function[t, b[t, If[k>t, 0, k], If[i>t, 0, i]]][n - k]], {k, 1, n}]];
    a[n_] := b[n, 0, 0];
    a /@ Range[0, 50] (* Jean-François Alcover, Dec 03 2020, after Alois P. Heinz *)

Formula

a(n) ~ c * d^n, where d = 1.61350953985228953675390530863679475666564394885974..., c = 0.5270561325668460003703909484716134447490733801644227... - Vaclav Kotesovec, Sep 21 2019