A261962 Number of compositions of n such that no part equals any of its two immediate predecessors.
1, 1, 1, 3, 3, 5, 11, 15, 23, 37, 67, 101, 165, 265, 419, 691, 1123, 1789, 2909, 4657, 7515, 12183, 19657, 31635, 51101, 82449, 132989, 214623, 346485, 558587, 901399, 1454949, 2347157, 3787197, 6111131, 9858931, 15908393, 25669125, 41416849, 66826277
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
Programs
-
Maple
b:= proc(n, i, j) option remember; `if`(n=0, 1, add( `if`(k=i or k=j, 0, (t-> b(t, `if`(k>t, 0, k), `if`(i>t, 0, i)))(n-k)), k=1..n)) end: a:= n-> b(n, 0$2): seq(a(n), n=0..50);
-
Mathematica
b[n_, i_, j_] := b[n, i, j] = If[n == 0, 1, Sum[If[k == i || k == j, 0, Function[t, b[t, If[k>t, 0, k], If[i>t, 0, i]]][n - k]], {k, 1, n}]]; a[n_] := b[n, 0, 0]; a /@ Range[0, 50] (* Jean-François Alcover, Dec 03 2020, after Alois P. Heinz *)
Formula
a(n) ~ c * d^n, where d = 1.61350953985228953675390530863679475666564394885974..., c = 0.5270561325668460003703909484716134447490733801644227... - Vaclav Kotesovec, Sep 21 2019