cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A144377 Expansion of phi(q) / phi(q^5) in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 2, 0, 0, 2, -2, -4, 0, 0, -2, 4, 8, 0, 0, 4, -8, -14, 0, 0, -8, 14, 24, 0, 0, 12, -22, -40, 0, 0, -20, 36, 64, 0, 0, 32, -56, -98, 0, 0, -48, 84, 148, 0, 0, 72, -126, -220, 0, 0, -106, 184, 320, 0, 0, 152, -264, -460, 0, 0, -216, 376, 652, 0, 0, 306, -528
Offset: 0

Views

Author

Michael Somos, Sep 18 2008

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*q + 2*q^4 - 2*q^5 - 4*q^6 - 2*q^9 + 4*q^10 + 8*q^11 + 4*q^14 + ...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 235, Entry 67.

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] / EllipticTheta[ 3, 0, q^5], {q, 0, n}]; (* Michael Somos, Sep 06 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^5 + A)^2 * eta(x^20 + A)^2 / (eta(x + A)^2 * eta(x^4 + A)^2 * eta(x^10 + A)^5), n))};

Formula

Expansion of eta(q^2)^5 * eta(q^5)^2 * eta(q^20)^2 / (eta(q)^2 * eta(q^4)^2 * eta(q^10)^5) in powers of q.
Euler transform of period 20 sequence [ 2, -3, 2, -1, 0, -3, 2, -1, 2, 0, 2, -1, 2, -3, 0, -1, 2, -3, 2, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (u^4 - 2*u^2 +5) * (v^4 - 2*v^2 + 5) - 4 * (u^2 - 2*u*v - v^2)^2.
G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = (v^2 + 3*u*v - u^2) * (u^2 + v^2) - u*v * (5 + u^2*v^2).
G.f. is a period 1 Fourier series which satisfies f(-1 / (20 t)) = 5^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A261968.
G.f.: Product_{k>0} P(20, x^k)^2 / (P(10, x^k)^3 * P(5, x^k)) where P(n, x) is the n-th cyclotomic polynomial.
a(5*n + 2) = a(5*n + 3) = 0.
a(n) = (-1)^n * A138527(n). Convolution inverse is A261968. - Michael Somos, Sep 06 2015

A262050 Expansion of f(-x)^2 * f(-x^10) / phi(-x)^3 in powers of x where phi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, 4, 11, 28, 63, 132, 264, 504, 928, 1660, 2892, 4924, 8221, 13480, 21750, 34592, 54288, 84168, 129048, 195816, 294282, 438324, 647413, 948748, 1380107, 1993632, 2860984, 4080172, 5784560, 8154900, 11435142, 15953124, 22147824, 30604868, 42102636, 57672312
Offset: 0

Views

Author

Michael Somos, Sep 09 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 4*x + 11*x^2 + 28*x^3 + 63*x^4 + 132*x^5 + 264*x^6 + 504*x^7 + ...
G.f. = q + 4*q^3 + 11*q^5 + 28*q^7 + 63*q^9 + 132*q^11 + 264*q^13 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x]^2 QPochhammer[ x^10] / EllipticTheta[ 4, 0, x]^3, {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^10 + A) / eta(x + A)^4, n))};

Formula

Expansion of q^(-1/2) * eta(q^2)^3 * eta(q^10) / eta(q)^4 in powers of q.
Euler transform of period 10 sequence [ 4, 1, 4, 1, 4, 1, 4, 1, 4, 0, ...].
2 * a(n) = A138526(2*n + 1) = - A261968(2*n + 1).
Showing 1-2 of 2 results.