A261983 Number of compositions of n such that at least two adjacent parts are equal.
0, 0, 1, 1, 4, 9, 18, 41, 89, 185, 388, 810, 1670, 3435, 7040, 14360, 29226, 59347, 120229, 243166, 491086, 990446, 1995410, 4016259, 8076960, 16231746, 32599774, 65437945, 131293192, 263316897, 527912140, 1058061751, 2120039885, 4246934012, 8505864640
Offset: 0
Keywords
Examples
a(5) = 9: 311, 113, 221, 122, 2111, 1211, 1121, 1112, 11111. From _Gus Wiseman_, Jul 07 2020: (Start) The a(2) = 1 through a(6) = 18 compositions: (1,1) (1,1,1) (2,2) (1,1,3) (3,3) (1,1,2) (1,2,2) (1,1,4) (2,1,1) (2,2,1) (2,2,2) (1,1,1,1) (3,1,1) (4,1,1) (1,1,1,2) (1,1,1,3) (1,1,2,1) (1,1,2,2) (1,2,1,1) (1,1,3,1) (2,1,1,1) (1,2,2,1) (1,1,1,1,1) (1,3,1,1) (2,1,1,2) (2,2,1,1) (3,1,1,1) (1,1,1,1,2) (1,1,1,2,1) (1,1,2,1,1) (1,2,1,1,1) (2,1,1,1,1) (1,1,1,1,1,1) (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
Column k=1 of A261981.
The complement A003242 counts anti-runs.
Sum of positive-indexed terms of row n of A106356.
Row sums of A131044.
The (1,1,1) matching case is A335464.
Strict compositions are A032020.
Compositions with adjacent parts coprime are A167606.
Compositions with equal parts contiguous are A274174.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 0, add( `if`(i=j, ceil(2^(n-j-1)), b(n-j, j)), j=1..n)) end: a:= n-> b(n, 0): seq(a(n), n=0..40);
-
Mathematica
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],MatchQ[#,{_,x_,x_,_}]&]],{n,0,10}] (* Gus Wiseman, Jul 06 2020 *) b[n_, i_] := b[n, i] = If[n == 0, 0, Sum[If[i == j, Ceiling[2^(n-j-1)], b[n-j, j]], {j, 1, n}]]; a[n_] := b[n, 0]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Nov 20 2023, after Alois P. Heinz's Maple code *)
Formula
a(n) ~ 2^(n-1). - Vaclav Kotesovec, Sep 08 2015