cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A139214 Expansion of q * psi(q^2) * psi(-q^9) / (phi(-q^3) * psi(-q^3)) in powers of q where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 0, 1, 3, 0, 3, 8, 0, 7, 18, 0, 15, 38, 0, 30, 75, 0, 57, 140, 0, 104, 252, 0, 183, 439, 0, 313, 744, 0, 522, 1232, 0, 852, 1998, 0, 1365, 3182, 0, 2150, 4986, 0, 3336, 7700, 0, 5106, 11736, 0, 7719, 17673, 0, 11538, 26322, 0, 17067, 38808, 0, 25004, 56682, 0
Offset: 1

Views

Author

Michael Somos, Apr 11 2008

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q + q^3 + 3*q^4 + 3*q^6 + 8*q^7 + 7*q^9 + 18*q^10 + 15*q^12 + 38*q^13 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[(1/2) EllipticTheta[ 2, 0, q] EllipticTheta[ 2, Pi/4, q^(9/2)] / (EllipticTheta[ 4, 0, q^3] EllipticTheta[ 2, Pi/4, q^(3/2)]), {q, 0, n}]; (* Michael Somos, Sep 07 2015 *)
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^4 + A)^2 * eta(x^6 + A)^2 * eta(x^9 + A) * eta(x^36 + A) / (eta(x^2 + A) * eta(x^3 + A)^3 * eta(x^12 + A) * eta(x^18 + A)), n))};

Formula

Expansion of eta(q^4)^2 * eta(q^6)^2 * eta(q^9) * eta(q^36) / (eta(q^2) * eta(q^3)^3 * eta(q^12) * eta(q^18)) in powers of q.
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = (1/4) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A139216.
a(3*n + 2) = 0. 2 * a(n) = A139213(n) unless n=0.
a(3*n) = A187100(n). a(2*n + 4) = 3 * A261992(n). - Michael Somos, Sep 07 2015
Showing 1-1 of 1 results.