cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262007 G.f.: Sum_{n=-oo..+oo} x^n * (1 - x^n)^n / (1 - x)^n.

Original entry on oeis.org

1, 2, 1, 8, 7, 27, 45, 102, 194, 439, 844, 1775, 3608, 7342, 14891, 30283, 61113, 123625, 249355, 502430, 1011305, 2034028, 4086860, 8206874, 16469851, 33035697, 66234208, 132746099, 265961186, 532718115, 1066778721, 2135822309, 4275459594, 8557335615, 17125445126, 34268966022, 68568212859, 137187104632
Offset: 1

Views

Author

Paul D. Hanna, Sep 21 2015

Keywords

Comments

Compare to the curious identity: Sum_{n=-oo..+oo} x^n * (1 - x^n)^n = 0.
Compare also to the g.f. of A077229, where A077229(n) equals the number of compositions of n where the largest part is <= the number of parts.

Examples

			G.f.: A(x) = x + 2*x^2 + x^3 + 8*x^4 + 7*x^5 + 27*x^6 + 45*x^7 + 102*x^8 + 194*x^9 + 439*x^10 + 844*x^11 + 1775*x^12 +...
such that A(x) = N(x) + P(x) where
N(x) = Sum_{n>=1} (-1)^n * x^(n^2-n) * (1 - x)^n / (1 - x^n)^n
P(x) = Sum_{n>=0} x^n * (1 - x^n)^n / (1 - x)^n.
Explicitly,
N(x) = -1 + x^2 - 2*x^3 + 3*x^4 - 4*x^5 + 4*x^6 - 3*x^7 + 4*x^8 - 10*x^9 + 18*x^10 - 19*x^11 + 9*x^12 + 2*x^13 + x^14 - 22*x^15 + 50*x^16 +...
P(x) = 1 + x + x^2 + 3*x^3 + 5*x^4 + 11*x^5 + 23*x^6 + 48*x^7 + 98*x^8 + 204*x^9 + 421*x^10 + 863*x^11 + 1766*x^12 + 3606*x^13 + 7341*x^14 + 14913*x^15 + 30233*x^16 +...+ A077229(n)*x^n +...
		

Crossrefs

Programs

  • PARI
    {a(n) = local(A=1);
    A = sum(k=-n-1, n+1, x^k * (1-x^k)^k / (1-x +x*O(x^n))^k); polcoeff(A, n)}
    for(n=1, 31, print1(a(n), ", "))
    
  • PARI
    {a(n) = local(A=1);
    A = sum(k=-n-1, n+1, (-1)^k * x^(k^2-k) * (1 - x)^k / (1 - x^k +x*O(x^n))^k); polcoeff(A, n)}
    for(n=1, 31, print1(a(n), ", "))

Formula

G.f.: Sum_{n=-oo..+oo} (-1)^n * x^(n^2-n) * (1 - x)^n / (1 - x^n)^n.
Limit a(n)^(1/n) = 2.
a(n) ~ 2^(n-1). - Vaclav Kotesovec, Sep 03 2017