A262009 Sum_{d|n} 2^(d^2) * n^2/d^2.
2, 24, 530, 65632, 33554482, 68719479000, 562949953421410, 18446744073709814144, 2417851639229258349417122, 1267650600228229401496837423704, 2658455991569831745807614120560689394, 22300745198530623141535718272648636384486240, 748288838313422294120286634350736906063837462004050
Offset: 1
Keywords
Examples
L.g.f.: L(x) = 2*x + 24*x^2/2 + 530*x^3/3 + 65632*x^4/4 + 33554482*x^5/5 + 68719479000*x^6/6 + 562949953421410*x^7/7 + ... where exp(L(x)) = 1 + 2*x + 14*x^2 + 202*x^3 + 16858*x^4 + 6746346*x^5 + 11466918526*x^6 + ... + A262008(n)*x^n + ...
Programs
-
Mathematica
a[n_] := DivisorSum[n, 2^(#^2) * (n/#)^2 &]; Array[a, 13] (* Amiram Eldar, Aug 24 2023 *)
-
PARI
{a(n) = sumdiv(n,d, 2^(d^2) * n^2/d^2)} for(n=1,20,print1(a(n),", "))
Comments