A262018 The first of five consecutive positive integers the sum of the squares of which is equal to the sum of the squares of eleven consecutive positive integers.
28, 5308, 945148, 168231388, 29944242268, 5329906892668, 948693482652988, 168862110005339548, 30056506887467786908, 5349889363859260730428, 952250250260060942229628, 169495194656926988456143708, 30169192398682743884251350748, 5369946751770871484408284289788
Offset: 1
Examples
28 is in the sequence because 28^2 + ... + 32^2 = 4510 = 15^2 + ... + 25^2.
Links
- Colin Barker, Table of n, a(n) for n = 1..444
- Index entries for linear recurrences with constant coefficients, signature (179,-179,1).
Programs
-
Mathematica
LinearRecurrence[{179,-179,1},{28,5308,945148},30] (* Harvey P. Dale, May 16 2019 *)
-
PARI
Vec(-4*x*(7*x^2+74*x+7)/((x-1)*(x^2-178*x+1)) + O(x^20))
Formula
a(n) = 179*a(n-1)-179*a(n-2)+a(n-3) for n>3.
G.f.: -4*x*(7*x^2+74*x+7) / ((x-1)*(x^2-178*x+1)).
Comments