A262038 Least palindrome >= n.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 11, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77
Offset: 0
Links
- M. F. Hasler, Table of n, a(n) for n = 0..10000
- Eric Weisstein's World of Mathematics, Palindromic Number
- Wikipedia, Palindromic number
- Index entries for sequences related to palindromes
Crossrefs
Programs
-
Haskell
a262038 n = a262038_list !! n a262038_list = f 0 a002113_list where f n ps'@(p:ps) = p : f (n + 1) (if p > n then ps' else ps) -- Reinhard Zumkeller, Sep 16 2015
-
Mathematica
palQ[n_] := Block[{d = IntegerDigits@ n}, d == Reverse@ d]; Table[k = n; While[! palQ@ k, k++]; k, {n, 0, 80}] (* Michael De Vlieger, Sep 09 2015 *)
-
PARI
{A262038(n, d=digits(n), p(d)=sum(i=1, #d\2, (10^(i-1)+10^(#d-i))*d[i],if(bittest(#d,0),10^(#d\2)*d[#d\2+1])))= for(i=(#d+3)\2,#d,d[i]>d[#d+1-i]&&break;(d[i]
9||return(p(d));d[i]=0);10^#d+1} \\ For a function "next strictly larger palindrome", delete the i==#d and n<10... part. - M. F. Hasler, Sep 09 2015 -
Python
def A262038(n): sl = len(str(n)) l = sl>>1 if sl&1: w = 10**l n2 = w*10 for y in range(n//(10**l),n2): k, m = y//10, 0 while k >= 10: k, r = divmod(k,10) m = 10*m + r z = y*w + 10*m + k if z >= n: return z else: w = 10**(l-1) n2 = w*10 for y in range(n//(10**l),n2): k, m = y, 0 while k >= 10: k, r = divmod(k,10) m = 10*m + r z = y*n2 + 10*m + k if z >= n: return z # Chai Wah Wu, Sep 14 2022
Comments