cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262047 Number of ordered partitions of [n] such that at least two parts have the same size.

Original entry on oeis.org

0, 0, 2, 6, 66, 510, 4280, 46536, 542962, 7074654, 101914512, 1621871196, 28087868160, 526841965260, 10641234260358, 230278335503586, 5315641087796562, 130370690653563150, 3385534274596691456, 92801584815121975452, 2677687776095609649256
Offset: 0

Views

Author

Alois P. Heinz, Sep 09 2015

Keywords

Comments

All terms are even.

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; `if`(n<2, 1,
           add(binomial(n, k)*g(k), k=0..n-1))
        end:
    b:= proc(n, i, p) option remember;
          `if`(i*(i+1)/2n, 0, b(n-i, i-1, p+1)*binomial(n, i))))
        end:
    a:= n-> g(n)-b(n$2, 0):
    seq(a(n), n=0..25);
  • Mathematica
    g[n_] := g[n] = If[n<2, 1, Sum[Binomial[n, k]*g[k], {k, 0, n-1}]]; b[n_, i_, p_] := b[n, i, p] = If[i*(i+1)/2n, 0, b[n-i, i-1, p+1]*Binomial[n, i]]]]; a[n_] := g[n] - b[n, n, 0]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 15 2017, translated from Maple *)

Formula

a(n) = A000670(n) - A032011(n).