A262047 Number of ordered partitions of [n] such that at least two parts have the same size.
0, 0, 2, 6, 66, 510, 4280, 46536, 542962, 7074654, 101914512, 1621871196, 28087868160, 526841965260, 10641234260358, 230278335503586, 5315641087796562, 130370690653563150, 3385534274596691456, 92801584815121975452, 2677687776095609649256
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..424
Programs
-
Maple
g:= proc(n) option remember; `if`(n<2, 1, add(binomial(n, k)*g(k), k=0..n-1)) end: b:= proc(n, i, p) option remember; `if`(i*(i+1)/2
n, 0, b(n-i, i-1, p+1)*binomial(n, i)))) end: a:= n-> g(n)-b(n$2, 0): seq(a(n), n=0..25); -
Mathematica
g[n_] := g[n] = If[n<2, 1, Sum[Binomial[n, k]*g[k], {k, 0, n-1}]]; b[n_, i_, p_] := b[n, i, p] = If[i*(i+1)/2
n, 0, b[n-i, i-1, p+1]*Binomial[n, i]]]]; a[n_] := g[n] - b[n, n, 0]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 15 2017, translated from Maple *)
Comments