A262050 Expansion of f(-x)^2 * f(-x^10) / phi(-x)^3 in powers of x where phi(), f() are Ramanujan theta functions.
1, 4, 11, 28, 63, 132, 264, 504, 928, 1660, 2892, 4924, 8221, 13480, 21750, 34592, 54288, 84168, 129048, 195816, 294282, 438324, 647413, 948748, 1380107, 1993632, 2860984, 4080172, 5784560, 8154900, 11435142, 15953124, 22147824, 30604868, 42102636, 57672312
Offset: 0
Keywords
Examples
G.f. = 1 + 4*x + 11*x^2 + 28*x^3 + 63*x^4 + 132*x^5 + 264*x^6 + 504*x^7 + ... G.f. = q + 4*q^3 + 11*q^5 + 28*q^7 + 63*q^9 + 132*q^11 + 264*q^13 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ QPochhammer[ x]^2 QPochhammer[ x^10] / EllipticTheta[ 4, 0, x]^3, {x, 0, n}];
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^10 + A) / eta(x + A)^4, n))};
Comments