cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262052 Euler pseudoprimes to base 5: composite integers such that abs(5^((n - 1)/2)) == 1 mod n.

Original entry on oeis.org

217, 781, 1541, 1729, 5461, 5611, 6601, 7449, 7813, 11041, 12801, 13021, 13333, 14981, 15751, 15841, 16297, 21361, 23653, 24211, 25351, 29539, 30673, 38081, 40501, 41041, 44173, 44801, 46657, 47641, 48133, 53971, 56033, 67921, 75361, 79381, 90241, 98173, 100651, 102311
Offset: 1

Views

Author

Daniel Lignon, Sep 09 2015

Keywords

Crossrefs

Cf. A006970 (base 2), A262051 (base 3), this sequence (base 5), A262053 (base 6), A262054 (base 7), A262055 (base 8).

Programs

  • Mathematica
    eulerPseudoQ[n_?PrimeQ, b_] = False; eulerPseudoQ[n_, b_] := Block[{p = PowerMod[b, (n - 1)/2, n]}, p == Mod[1, n] || p == Mod[-1, n]]; Select[2 Range[27000] + 1, eulerPseudoQ[#, 5] &] (* Michael De Vlieger, Sep 09 2015, after Jean-François Alcover at A006970 *)
  • PARI
    for(n=1, 1e5, if( Mod(5, (2*n+1))^n == 1 ||  Mod(5, (2*n+1))^n == 2*n && bigomega(2*n+1) != 1 , print1(2*n+1", "))); \\ Altug Alkan, Oct 11 2015