A262053 Euler pseudoprimes to base 6: composite integers such that abs(6^((n - 1)/2)) == 1 mod n.
185, 217, 301, 481, 1111, 1261, 1333, 1729, 2465, 2701, 3421, 3565, 3589, 3913, 5713, 6533, 8365, 10585, 11041, 11137, 12209, 14701, 15841, 17329, 18361, 20017, 21049, 22049, 29341, 31021, 31621, 34441, 36301, 38081, 39305, 39493, 41041, 43621, 44801, 46657
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..86 from Daniel Lignon)
Crossrefs
Programs
-
Mathematica
eulerPseudoQ[n_?PrimeQ, b_] = False; eulerPseudoQ[n_, b_] := Block[{p = PowerMod[b, (n - 1)/2, n]}, p == Mod[1, n] || p == Mod[-1, n]]; Select[2 Range[25000] + 1, eulerPseudoQ[#, 6] &] (* Michael De Vlieger, Sep 09 2015, after Jean-François Alcover at A006970 *)
-
PARI
for(n=1, 1e5, if( Mod(6, (2*n+1))^n == 1 || Mod(6, (2*n+1))^n == 2*n && bigomega(2*n+1) != 1 , print1(2*n+1", "))); \\ Altug Alkan, Oct 11 2015