cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262056 Expansion of phi(q^2) / phi(-q^3) in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 0, 2, 2, 0, 4, 4, 0, 10, 8, 0, 20, 14, 0, 36, 24, 0, 64, 42, 0, 108, 68, 0, 176, 108, 0, 280, 170, 0, 436, 260, 0, 666, 392, 0, 1000, 584, 0, 1480, 856, 0, 2160, 1240, 0, 3116, 1780, 0, 4448, 2526, 0, 6286, 3552, 0, 8804, 4956, 0, 12228, 6856, 0, 16852
Offset: 0

Views

Author

Michael Somos, Sep 09 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*q^2 + 2*q^3 + 4*q^5 + 4*q^6 + 10*q^8 + 8*q^9 + 20*q^11 + ...
		

Crossrefs

Cf. A143068.

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q^2] / EllipticTheta[ 4, 0, q^3], {q, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^4 + A)^5 * eta(x^6 + A) / (eta(x^2 + A)^2 * eta(x^3 + A)^2 * eta(x^8 + A)^2), n))};

Formula

Expansion of eta(q^4)^5 * eta(q^6) / (eta(q^2)^2 * eta(q^3)^2 * eta(q^8)^2) in powers of q.
Euler transform of period 24 sequence [ 0, 2, 2, -3, 0, 3, 0, -1, 2, 2, 0, -2, 0, 2, 2, -1, 0, 3, 0, -3, 2, 2, 0, 0, ...].
a(n) = A143068(2*n). a(3*n + 1) = 0.