A262059 Least integer k such that k^(1/3)/log(k) exceeds n.
2, 4913, 29410, 96854, 236916, 484596, 879483, 1465239, 2289183, 3401984, 4857388, 6712006, 9025131, 11858570, 15276512, 19345406, 24133846, 29712478, 36153913, 43532644, 51924974, 61408954, 72064316, 83972419, 97216198, 111880113, 128050105, 145813554, 165259239, 186477301, 209559205
Offset: 1
Keywords
Programs
-
Maple
A262059val := proc(k) Digits := 100 ; evalf(root[3](k)/log(k)) ; end proc: A262059lims := proc(n,lowk,highk) local vallow, valhigh,midk,valmid ; vallow := A262059val(lowk) ; valhigh := A262059val(highk) ; if valhigh > n and vallow <= n and highk= lowk+1 then return highk; else midk := floor((lowk+highk)/2) ; valmid := A262059val(midk) ; if valmid < n then return procname(n,midk,highk) ; else return procname(n,lowk,midk) ; end if; end if; end proc: A262059 := proc(n) local lowk,highk,p ; if n = 1 then return 2; end if; for p from 0 do lowk := 10^p ; highk := 10^(p+1) ; if A262059val(highk) >=n then return A262059lims(n,min(2,lowk),highk) ; end if; end do: end proc: # R. J. Mathar, Oct 22 2015
-
Mathematica
f[n_] := f[n] = Block[{k = f[n - 1]}, While[n > k^(1/3)/Log[k], k++]; k]; f[1] = 2; Array[f, 40]
-
PARI
a(n) = {my(k = 2); while(sqrtn(k,3)/log(k) <= n, k++); k;} \\ Michel Marcus, Sep 10 2015