cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262071 Number T(n,k) of ordered partitions of an n-set with nondecreasing block sizes and maximal block size equal to k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 6, 3, 1, 0, 24, 18, 4, 1, 0, 120, 90, 30, 5, 1, 0, 720, 630, 200, 45, 6, 1, 0, 5040, 4410, 1610, 350, 63, 7, 1, 0, 40320, 37800, 13440, 3290, 560, 84, 8, 1, 0, 362880, 340200, 130200, 30870, 5922, 840, 108, 9, 1, 0, 3628800, 3515400, 1327200, 334950, 61992, 9870, 1200, 135, 10, 1
Offset: 0

Views

Author

Alois P. Heinz, Sep 10 2015

Keywords

Examples

			T(3,1) = 6: 1|2|3, 1|3|2, 2|1|3, 2|3|1, 3|1|2, 3|2|1.
T(3,2) = 3: 1|23, 2|13, 3|12.
T(3,3) = 1: 123.
Triangle T(n,k) begins:
  1;
  0,     1;
  0,     2,     1;
  0,     6,     3,     1;
  0,    24,    18,     4,    1;
  0,   120,    90,    30,    5,   1;
  0,   720,   630,   200,   45,   6,  1;
  0,  5040,  4410,  1610,  350,  63,  7, 1;
  0, 40320, 37800, 13440, 3290, 560, 84, 8, 1;
		

Crossrefs

Columns k=0-10 give: A000007, A000142 (for n>0), A272492, A272493, A272494, A272495, A272496, A272497, A272498, A272499, A272500.
Main diagonal gives A000012.
Row sums give A005651.
T(2n,n) gives A266518.
Cf. A262072.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
           b(n, i-1)+`if`(i>n, 0, binomial(n, i)*b(n-i, i))))
        end:
    T:= (n, k)-> b(n, k) -`if`(k=0, 0, b(n, k-1)):
    seq(seq(T(n, k), k=0..n), n=0..12);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1] + If[i > n, 0, Binomial[n, i]*b[n - i, i]]]]; T[n_, k_] :=  b[n, k] - If[k == 0, 0, b[n, k - 1]]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 12 2016, Alois P. Heinz *)

Formula

E.g.f. of column k: x^k * Product_{i=1..k} (i-1)!/(i!-x^i).