A262071 Number T(n,k) of ordered partitions of an n-set with nondecreasing block sizes and maximal block size equal to k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 2, 1, 0, 6, 3, 1, 0, 24, 18, 4, 1, 0, 120, 90, 30, 5, 1, 0, 720, 630, 200, 45, 6, 1, 0, 5040, 4410, 1610, 350, 63, 7, 1, 0, 40320, 37800, 13440, 3290, 560, 84, 8, 1, 0, 362880, 340200, 130200, 30870, 5922, 840, 108, 9, 1, 0, 3628800, 3515400, 1327200, 334950, 61992, 9870, 1200, 135, 10, 1
Offset: 0
Examples
T(3,1) = 6: 1|2|3, 1|3|2, 2|1|3, 2|3|1, 3|1|2, 3|2|1. T(3,2) = 3: 1|23, 2|13, 3|12. T(3,3) = 1: 123. Triangle T(n,k) begins: 1; 0, 1; 0, 2, 1; 0, 6, 3, 1; 0, 24, 18, 4, 1; 0, 120, 90, 30, 5, 1; 0, 720, 630, 200, 45, 6, 1; 0, 5040, 4410, 1610, 350, 63, 7, 1; 0, 40320, 37800, 13440, 3290, 560, 84, 8, 1;
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, binomial(n, i)*b(n-i, i)))) end: T:= (n, k)-> b(n, k) -`if`(k=0, 0, b(n, k-1)): seq(seq(T(n, k), k=0..n), n=0..12);
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1] + If[i > n, 0, Binomial[n, i]*b[n - i, i]]]]; T[n_, k_] := b[n, k] - If[k == 0, 0, b[n, k - 1]]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 12 2016, Alois P. Heinz *)
Formula
E.g.f. of column k: x^k * Product_{i=1..k} (i-1)!/(i!-x^i).