A262072 Number T(n,k) of partitions of an n-set with distinct block sizes and maximal block size equal to k; triangle T(n,k), n>=0, ceiling((sqrt(1+8*n)-1)/2)<=k<=n, read by rows.
1, 1, 1, 3, 1, 4, 1, 10, 5, 1, 60, 15, 6, 1, 140, 21, 7, 1, 280, 224, 28, 8, 1, 1260, 630, 336, 36, 9, 1, 12600, 3780, 1050, 480, 45, 10, 1, 34650, 7392, 1650, 660, 55, 11, 1, 110880, 74844, 12672, 2475, 880, 66, 12, 1, 360360, 276276, 140712, 20592, 3575, 1144, 78, 13, 1
Offset: 0
Examples
Triangle T(n,k) begins: : 1; : 1; : 1; : 3, 1; : 4, 1; : 10, 5, 1; : 60, 15, 6, 1; : 140, 21, 7, 1; : 280, 224, 28, 8, 1; : 1260, 630, 336, 36, 9, 1; : 12600, 3780, 1050, 480, 45, 10, 1;
Links
- Alois P. Heinz, Rows n = 0..200, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(i*(i+1)/2
n, 0, binomial(n, i)*b(n-i, i-1)))) end: T:= (n, k)-> b(n, k) -`if`(k=0, 0, b(n, k-1)): seq(seq(T(n,k), k=ceil((sqrt(1+8*n)-1)/2)..n), n=0..14); -
Mathematica
b[n_, i_] := b[n, i] = If[i*(i+1)/2
n, 0, Binomial[n, i]*b[n-i, i-1]]]]; T[n_, k_] := b[n, k] - If[k == 0, 0, b[n, k-1]]; Table[T[n, k], {n, 0, 14}, {k, Ceiling[(Sqrt[1+8*n]-1)/2], n}] // Flatten (* Jean-François Alcover, Feb 04 2017, translated from Maple *)