cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262072 Number T(n,k) of partitions of an n-set with distinct block sizes and maximal block size equal to k; triangle T(n,k), n>=0, ceiling((sqrt(1+8*n)-1)/2)<=k<=n, read by rows.

Original entry on oeis.org

1, 1, 1, 3, 1, 4, 1, 10, 5, 1, 60, 15, 6, 1, 140, 21, 7, 1, 280, 224, 28, 8, 1, 1260, 630, 336, 36, 9, 1, 12600, 3780, 1050, 480, 45, 10, 1, 34650, 7392, 1650, 660, 55, 11, 1, 110880, 74844, 12672, 2475, 880, 66, 12, 1, 360360, 276276, 140712, 20592, 3575, 1144, 78, 13, 1
Offset: 0

Views

Author

Alois P. Heinz, Sep 10 2015

Keywords

Examples

			Triangle T(n,k) begins:
: 1;
:    1;
:       1;
:       3,  1;
:           4,     1;
:          10,     5,    1;
:          60,    15,    6,    1;
:                140,   21,    7,   1;
:                280,  224,   28,   8,  1;
:               1260,  630,  336,  36,  9,  1;
:              12600, 3780, 1050, 480, 45, 10, 1;
		

Crossrefs

Row sums give A007837.
Column sums give A262073.
Cf. A002024, A262071, A262078 (same read by columns).

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(i*(i+1)/2n, 0, binomial(n, i)*b(n-i, i-1))))
        end:
    T:= (n, k)-> b(n, k) -`if`(k=0, 0, b(n, k-1)):
    seq(seq(T(n,k), k=ceil((sqrt(1+8*n)-1)/2)..n), n=0..14);
  • Mathematica
    b[n_, i_] := b[n, i] = If[i*(i+1)/2n, 0, Binomial[n, i]*b[n-i, i-1]]]]; T[n_, k_] := b[n, k] - If[k == 0, 0, b[n, k-1]]; Table[T[n, k], {n, 0, 14}, {k, Ceiling[(Sqrt[1+8*n]-1)/2], n}] // Flatten (* Jean-François Alcover, Feb 04 2017, translated from Maple *)