A262078 Number T(n,k) of partitions of an n-set with distinct block sizes and maximal block size equal to k; triangle T(n,k), k>=0, k<=n<=k*(k+1)/2, read by columns.
1, 1, 1, 3, 1, 4, 10, 60, 1, 5, 15, 140, 280, 1260, 12600, 1, 6, 21, 224, 630, 3780, 34650, 110880, 360360, 2522520, 37837800, 1, 7, 28, 336, 1050, 7392, 74844, 276276, 1513512, 9459450, 131171040, 428828400, 2058376320, 9777287520, 97772875200, 2053230379200
Offset: 0
Examples
Triangle T(n,k) begins: : 1; : 1; : 1; : 3, 1; : 4, 1; : 10, 5, 1; : 60, 15, 6, 1; : 140, 21, 7, 1; : 280, 224, 28, 8, 1; : 1260, 630, 336, 36, 9, 1; : 12600, 3780, 1050, 480, 45, 10, 1;
Links
- Alois P. Heinz, Columns k = 0..36, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(i*(i+1)/2
n, 0, binomial(n, i)*b(n-i, i-1)))) end: T:= (n, k)-> b(n, k) -`if`(k=0, 0, b(n, k-1)): seq(seq(T(n, k), n=k..k*(k+1)/2), k=0..7); -
Mathematica
b[n_, i_] := b[n, i] = If[i*(i+1)/2
n, 0, Binomial[n, i]*b[n-i, i-1]]]]; T[n_, k_] := b[n, k] - If[k==0, 0, b[n, k-1]]; Table[T[n, k], {k, 0, 7}, {n, k, k*(k+1)/2}] // Flatten (* Jean-François Alcover, Dec 18 2016, after Alois P. Heinz *)