cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262090 Expansion of f(x^3, x^21) / f(-x^2, -x^4) where f(, ) is the Ramanujan general theta function.

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 3, 2, 5, 3, 7, 5, 11, 7, 15, 11, 22, 15, 30, 22, 42, 31, 56, 43, 77, 58, 101, 80, 135, 106, 177, 142, 232, 187, 299, 246, 388, 319, 495, 415, 634, 532, 803, 683, 1017, 869, 1277, 1103, 1605, 1390, 2000, 1751, 2492, 2189, 3087, 2733, 3819
Offset: 0

Views

Author

Michael Somos, Sep 10 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x^2 + x^3 + 2*x^4 + x^5 + 3*x^6 + 2*x^7 + 5*x^8 + 3*x^9 + ...
G.f. = q^77 + q^173 + q^221 + 2*q^269 + q^317 + 3*q^365 + 2*q^413 + ...
		

Crossrefs

Cf. A143067.

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x^3, x^24] QPochhammer[ -x^21, x^24] QPochhammer[ x^24] / QPochhammer[ x^2], {x, 0, n}];
  • PARI
    {a(n) = if( n<0, 0, A = x * O(x^n); polcoeff( subst( prod(k=1, n\3, 1 - x^k * [1, 1, 0, 0, 0, 0, 0, 1][k%8 + 1], 1 + x * O(x^(n\3))), x, -x^3) / eta(x^2 + x * O(x^n)), n))};

Formula

Euler transform of period 48 sequence [ 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, ...].
a(n) = - A143067(2*n + 3).