cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262124 Number A(n,k) of permutations p of [n] such that the up-down signature of p has nonnegative partial sums with a maximal value <= k; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 2, 0, 1, 1, 1, 3, 5, 0, 1, 1, 1, 3, 8, 16, 0, 1, 1, 1, 3, 9, 40, 61, 0, 1, 1, 1, 3, 9, 44, 162, 272, 0, 1, 1, 1, 3, 9, 45, 219, 1134, 1385, 0, 1, 1, 1, 3, 9, 45, 224, 1445, 6128, 7936, 0, 1, 1, 1, 3, 9, 45, 225, 1568, 9985, 55152, 50521, 0
Offset: 0

Views

Author

Alois P. Heinz, Sep 11 2015

Keywords

Examples

			p = 1423 is counted by T(4,1) because the up-down signature of p = 1423 is 1,-1,1 with partial sums 1,0,1.
q = 1432 is not counted by any T(4,k) because the up-down signature of q = 1432 is 1,-1,-1 with partial sums 1,0,-1.
A(4,1) = 5: 1324, 1423, 2314, 2413, 3412.
A(4,2) = 8: 1243, 1324, 1342, 1423, 2314, 2341, 2413, 3412.
A(4,3) = 9: 1234, 1243, 1324, 1342, 1423, 2314, 2341, 2413, 3412.
Square array A(n,k) begins:
  1,   1,    1,    1,    1,    1,    1,    1, ...
  1,   1,    1,    1,    1,    1,    1,    1, ...
  0,   1,    1,    1,    1,    1,    1,    1, ...
  0,   2,    3,    3,    3,    3,    3,    3, ...
  0,   5,    8,    9,    9,    9,    9,    9, ...
  0,  16,   40,   44,   45,   45,   45,   45, ...
  0,  61,  162,  219,  224,  225,  225,  225, ...
  0, 272, 1134, 1445, 1568, 1574, 1575, 1575, ...
		

Crossrefs

Main diagonal gives A000246.

Programs

  • Maple
    b:= proc(u, o, c) option remember; `if`(c<0, 0, `if`(u+o=0, x^c,
          (p-> add(coeff(p, x, i)*x^max(i, c), i=0..degree(p)))(add(
           b(u-j, o-1+j, c-1), j=1..u)+add(b(u+j-1, o-j, c+1), j=1..o))))
        end:
    A:= (n,k)-> `if`(n=0, 1, (p-> add(coeff(p, x, i), i=0..min(n, k))
                  )(add(b(j-1, n-j, 0), j=1..n))):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    b[u_, o_, c_] := b[u, o, c] = If[c<0, 0, If[u+o == 0, x^c, Function[p, Sum[ Coefficient[p, x, i]*x^Max[i, c], {i, 0, Exponent[p, x]}]][Sum[b[u-j, o - 1+j, c-1], {j, 1, u}] + Sum[b[u+j-1, o-j, c+1], {j, 1, o}]]]]; A[n_, k_] := If[n==0, 1, Function[p, Sum[Coefficient[p, x, i], {i, 0, Min[n, k]}]][ Sum[b[j-1, n-j, 0], {j, 1, n}]]]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Feb 22 2016, after Alois P. Heinz *)

Formula

A(n,k) = Sum_{i=0..k} A262125(n,i).