A262170 Number of permutations p of [n] such that the up-down signature of 0,p has nonnegative partial sums with a maximal value <= 8.
1, 1, 2, 5, 20, 87, 522, 3271, 26168, 214954, 2149540, 21879021, 262548252, 3189754241, 44656559374, 630564958413, 10089039334608, 162310602568627, 2921590846235286, 52733511434265043, 1054670228685300860, 21098558728828707796, 464168292034231571512
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..400
Crossrefs
Column k=8 of A262163.
Programs
-
Maple
b:= proc(u, o, c) option remember; `if`(c<0 or c>8, 0, `if`(u+o=0, x^c, (p-> add(coeff(p, x, i)*x^max(i, c), i=0..8))(add( b(u-j, o-1+j, c-1), j=1..u)+add(b(u+j-1, o-j, c+1), j=1..o)))) end: a:= n-> (p-> add(coeff(p, x, i), i=0..min(n, 8)))(b(0, n, 0)): seq(a(n), n=0..25);
Formula
a(n) = A262163(n,8).