A262177 Decimal expansion of Q_5 = zeta(5) / (Sum_{k>=1} (-1)^(k+1) / (k^5 * binomial(2k, k))), a conjecturally irrational constant defined by an Apéry-like formula.
2, 0, 9, 4, 8, 6, 8, 6, 2, 2, 0, 1, 0, 0, 3, 6, 9, 9, 3, 8, 5, 0, 2, 4, 9, 2, 9, 3, 7, 3, 2, 9, 4, 1, 6, 3, 0, 2, 9, 6, 7, 5, 8, 7, 4, 8, 5, 6, 7, 7, 8, 1, 8, 2, 7, 4, 0, 1, 2, 7, 5, 8, 7, 8, 3, 7, 4, 3, 8, 0, 0, 7, 8, 7, 6, 8, 4, 6, 8, 1, 5, 6, 3, 2, 0, 6, 0, 4, 4, 2, 3, 2, 0, 9, 0, 4, 3, 1, 3, 6, 9, 3, 1
Offset: 1
Examples
2.09486862201003699385024929373294163029675874856778182740127587837438...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- David Bailey, Jonathan Borwein, David Bradley, Experimental determination of Apéry-like identities for zeta(2n+2), arXiv:math/0505270 [math.NT], 2005.
Crossrefs
Cf. A013663.
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692, A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
Programs
-
Mathematica
Q5 = Zeta[5]/Sum[(-1)^(k+1)/(k^5*Binomial[2k, k]), {k, 1, Infinity}]; RealDigits[Q5, 10, 103] // First
-
PARI
zeta(5)/suminf(k=1, (-1)^(k+1)/(k^5*binomial(2*k,k))) \\ Michel Marcus, Sep 14 2015
Formula
Equals 2*zeta(5)/6F5(1,1,1,1,1,1; 3/2,2,2,2,2; -1/4).
Comments