cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262192 Number of compositions of n such that the maximal distance between two identical parts equals one.

Original entry on oeis.org

0, 0, 1, 0, 3, 4, 5, 12, 21, 36, 43, 88, 133, 222, 331, 450, 753, 1120, 1703, 2508, 3753, 5010, 7807, 11020, 16243, 22974, 33277, 46764, 63639, 91822, 127943, 180048, 249585, 348204, 480361, 664618, 884833, 1237470, 1675087, 2299104, 3103203, 4234072, 5700371
Offset: 0

Views

Author

Alois P. Heinz, Sep 14 2015

Keywords

Examples

			a(2) = 1: 11.
a(4) = 3: 22, 112, 211.
a(5) = 4: 113, 122, 221, 311.
a(6) = 5: 33, 114, 411, 1122, 2211.
a(7) = 12: 115, 133, 223, 322, 331, 511, 1123, 1132, 2113, 2311, 3112, 3211.
a(8) = 21: 44, 116, 224, 233, 332, 422, 611, 1124, 1133, 1142, 1223, 1322, 2114, 2213, 2231, 2411, 3122, 3221, 3311, 4112, 4211.
		

Crossrefs

Column k=1 of A262191.

Programs

  • Maple
    g:= proc(n, k) option remember; `if`(k<0 or n<0, 0,
          `if`(k=0, `if`(n=0, 1, 0), g(n-k, k)+k*g(n-k, k-1)))
        end:
    b:= proc(n, i) option remember; expand(`if`(i*(i+1) (p-> add(coeff(p, x, i)*i!, i=0..degree(p)))(b(n$2))
            -add(g(n, k), k=0..floor((sqrt(8*n+1)-1)/2)):
    seq(a(n), n=0..50);
  • Mathematica
    g[n_, k_] := g[n, k] = If[k < 0 || n < 0, 0, If[k == 0, If[n == 0, 1, 0], g[n - k, k] + k*g[n - k, k - 1]]];
    b[n_, i_] := b[n, i] = Expand[If[i(i+1) < n, 0, If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1]*If[j == 0, 1, x], {j, 0, 2}]]]]];
    a[n_] := With[{p = b[n, n]}, Sum[Coefficient[p, x, i]*i!, {i, 0, Exponent[p, x]}]] - Sum[g[n, k], {k, 0, Floor[(Sqrt[8n + 1] - 1)/2]}];
    a /@ Range[0, 50] (* Jean-François Alcover, Dec 29 2020, after Alois P. Heinz *)