A262262 Number of prime divisors p | n such that p^2 < n and p^2 does not divide n.
0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 3, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 2, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 2, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 0, 0, 0, 1, 1, 0, 1, 2, 0, 1, 0, 1, 0, 2, 1, 1, 1, 0, 0, 2, 1, 0, 1, 1, 1, 1, 0
Offset: 1
Examples
a(6) = 1 because 4, 9 are squares of prime divisors of 6 and only 4 < 6 does not divide 6.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
Mathematica
f[n_] := Block[{d = First /@ FactorInteger@ n}, Select[d^2, And[Mod[n, #] != 0, # < n] &]]; Length@ f@ # & /@ Range@ 120 (* Michael De Vlieger, Sep 17 2015 *)
-
PARI
a(n) = sumdiv(n, d, isprime(d) && (d^2 < n) && (n % d^2)); \\ Michel Marcus, Sep 17 2015
-
PARI
a(n)=my(f=factor(n)[,1]); sum(i=1,#f,f[i]^2
Charles R Greathouse IV, Sep 17 2015
Comments