cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A327122 Expansion of Sum_{k>=1} sigma(k) * x^k / (1 + x^(2*k)), where sigma = A000203.

Original entry on oeis.org

1, 3, 3, 7, 7, 9, 7, 15, 10, 21, 11, 21, 15, 21, 21, 31, 19, 30, 19, 49, 21, 33, 23, 45, 38, 45, 30, 49, 31, 63, 31, 63, 33, 57, 49, 70, 39, 57, 45, 105, 43, 63, 43, 77, 70, 69, 47, 93, 50, 114, 57, 105, 55, 90, 77, 105, 57, 93, 59, 147, 63, 93, 70, 127, 105
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 14 2019

Keywords

Comments

Inverse Moebius transform of A050469.

Crossrefs

Programs

  • Mathematica
    nmax = 65; CoefficientList[Series[Sum[DivisorSigma[1, k] x^k/(1 + x^(2 k)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    A050469[n_] := DivisorSum[n, # &, MemberQ[{1}, Mod[n/#, 4]] &] - DivisorSum[n, # &, MemberQ[{3}, Mod[n/#, 4]] &]; a[n_] := DivisorSum[n, A050469[#] &]; Table[a[n], {n, 1, 65}]
    f[p_, e_] := If[Mod[p, 4] == 1, (p^(e+2)-(e+2)*p+e+1)/(p-1)^2, (2*p^(e+2) + ((-1)^e-1)*p - ((-1)^e+1))/(2*(p^2-1))]; f[2, e_] := 2^(e+1)-1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 70] (* Amiram Eldar, Aug 28 2023 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; if(p == 2, 2^(e+1)-1, if(p%4 == 1, (p^(e+2)-(e+2)*p+e+1)/(p-1)^2, (2*p^(e+2) + ((-1)^e-1)*p - ((-1)^e+1))/(2*(p^2-1))))); } \\ Amiram Eldar, Aug 28 2023

Formula

a(n) = Sum_{d|n} A050469(d).
From Amiram Eldar, Aug 28 2023: (Start)
Multiplicative with a(2^e) = 2^(e+1)-1, and if p is an odd prime a(p^e) = (p^(e+2)-(e+2)*p+e+1)/(p-1)^2 if p == 1 (mod 4) and (2*p^(e+2) + ((-1)^e-1)*p - ((-1)^e+1))/(2*(p^2-1)) otherwise.
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/12 * (A175647/A243381) = 0.753351504961... . (End)
Showing 1-1 of 1 results.