cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262280 Number of ways to select a nonempty subset s from an n-set and then partition s into blocks of equal size.

Original entry on oeis.org

0, 1, 4, 11, 29, 72, 190, 527, 1552, 5031, 18087, 66904, 266381, 1164516, 5215644, 23868103, 117740143, 609872350, 3268548406, 18110463455, 102867877414, 620476915965, 4005216028161, 25747549921338, 166978155172420, 1168774024335203, 8556355097320141
Offset: 0

Views

Author

Alois P. Heinz, Sep 17 2015

Keywords

Examples

			a(3) = 11: 1, 2, 3, 12, 1|2, 13, 1|3, 23, 2|3, 123, 1|2|3.
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember;
          add(1/(d!*(n/d)!^d), d=numtheory[divisors](n))
        end:
    a:= n-> n! * add(b(k)/(n-k)!, k=1..n):
    seq(a(n), n=0..30);
  • Mathematica
    b[n_] := b[n] = DivisorSum[n, 1/(#!*(n/#)!^#)&]; a[n_] := n!*Sum[b[k]/(n-k)!, {k, 1, n}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 15 2017, translated from Maple *)

Formula

E.g.f.: exp(x) * Sum_{k>=1} (exp(x^k/k!)-1).
a(n) = Sum_{k=1..n} C(n,k) * A038041(k).
a(n) = A262320(n) - 1.