A262280 Number of ways to select a nonempty subset s from an n-set and then partition s into blocks of equal size.
0, 1, 4, 11, 29, 72, 190, 527, 1552, 5031, 18087, 66904, 266381, 1164516, 5215644, 23868103, 117740143, 609872350, 3268548406, 18110463455, 102867877414, 620476915965, 4005216028161, 25747549921338, 166978155172420, 1168774024335203, 8556355097320141
Offset: 0
Keywords
Examples
a(3) = 11: 1, 2, 3, 12, 1|2, 13, 1|3, 23, 2|3, 123, 1|2|3.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..616
Programs
-
Maple
b:= proc(n) option remember; add(1/(d!*(n/d)!^d), d=numtheory[divisors](n)) end: a:= n-> n! * add(b(k)/(n-k)!, k=1..n): seq(a(n), n=0..30);
-
Mathematica
b[n_] := b[n] = DivisorSum[n, 1/(#!*(n/#)!^#)&]; a[n_] := n!*Sum[b[k]/(n-k)!, {k, 1, n}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 15 2017, translated from Maple *)