A262316 Number of (n+2)X(4+2) 0..1 arrays with each row and column divisible by 7, read as a binary number with top and left being the most significant bits.
10, 27, 133, 1618, 6043, 42661, 683218, 4276587, 39384421, 511294354, 4145349211, 40383402661, 455304705490, 4148740666347, 41070560499493, 433051832901778, 4157030255637403, 41395269270386341, 423634866109163218
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..1..0..1..0..1....1..1..0..0..0..1....1..1..1..1..1..1....1..1..1..0..0..0 ..1..0..1..0..1..0....0..1..0..1..0..1....0..1..1..1..0..0....0..1..0..1..0..1 ..1..0..0..0..1..1....0..0..0..1..1..1....0..0..0..1..1..1....0..0..1..1..1..0 ..1..0..1..0..1..0....0..0..0..1..1..1....0..0..0..0..0..0....0..0..0..1..1..1 ..0..1..0..1..0..1....1..0..0..0..1..1....1..0..0..0..1..1....1..0..1..0..1..0 ..0..1..1..1..0..0....1..1..0..0..0..1....1..1..1..0..0..0....1..1..0..0..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A262319.
Formula
Empirical: a(n) = 13*a(n-1) -30*a(n-2) +775*a(n-3) -10075*a(n-4) +23250*a(n-5) -187265*a(n-6) +2434445*a(n-7) -5617950*a(n-8) +18375455*a(n-9) -238880915*a(n-10) +551263650*a(n-11) -585288123*a(n-12) +7608745599*a(n-13) -17558643690*a(n-14) -12851058675*a(n-15) +167063762775*a(n-16) -385531760250*a(n-17) +757921180765*a(n-18) -9852975349945*a(n-19) +22737635422950*a(n-20) -1115961555955*a(n-21) +14507500227415*a(n-22) -33478846678650*a(n-23) -69403913471776*a(n-24) +902250875133088*a(n-25) -2082117404153280*a(n-26) -67517783528000*a(n-27) +877731185864000*a(n-28) -2025533505840000*a(n-29)
Comments