cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A262314 Number of (n+2)X(2+2) 0..1 arrays with each row and column divisible by 7, read as a binary number with top and left being the most significant bits.

Original entry on oeis.org

3, 5, 9, 27, 61, 145, 435, 1253, 3593, 10779, 32445, 96881, 290643, 875365, 2627721, 7883163, 23685949, 71096657, 213289971, 640160485, 1920877321, 5762631963, 17289819325, 51872540977, 155617622931, 466863471461, 1400610395529
Offset: 1

Views

Author

R. H. Hardin, Sep 17 2015

Keywords

Comments

Column 2 of A262319.

Examples

			Some solutions for n=4
..0..1..1..1....0..1..1..1....1..1..1..0....1..1..1..0....0..1..1..1
..0..1..1..1....0..1..1..1....1..1..1..0....0..0..0..0....1..1..1..0
..1..1..1..0....0..1..1..1....1..1..1..0....0..0..0..0....0..1..1..1
..1..1..1..0....1..1..1..0....1..1..1..0....0..0..0..0....1..1..1..0
..1..1..1..0....1..1..1..0....1..1..1..0....1..1..1..0....0..1..1..1
..0..1..1..1....1..1..1..0....1..1..1..0....1..1..1..0....1..1..1..0
		

Crossrefs

Cf. A262319.

Formula

Empirical: a(n) = 4*a(n-1) -4*a(n-2) +20*a(n-3) -68*a(n-4) +68*a(n-5) -162*a(n-6) +444*a(n-7) -444*a(n-8) +644*a(n-9) -1244*a(n-10) +1244*a(n-11) -1277*a(n-12) +1376*a(n-13) -1376*a(n-14) +1032*a(n-15)

A262315 Number of (n+2)X(3+2) 0..1 arrays with each row and column divisible by 7, read as a binary number with top and left being the most significant bits.

Original entry on oeis.org

5, 9, 17, 133, 361, 1009, 8357, 33993, 127121, 795013, 3876585, 16907121, 90644645, 463649609, 2179845009, 11046180229, 56646588009, 276046895345, 1376462436005, 7003379302345, 34679915634321, 172507268999557, 871215356444137
Offset: 1

Views

Author

R. H. Hardin, Sep 17 2015

Keywords

Comments

Column 3 of A262319.

Examples

			Some solutions for n=4
..0..0..1..1..1....1..1..1..0..0....0..1..1..1..0....1..1..1..0..0
..0..0..1..1..1....1..0..1..0..1....1..0..1..0..1....1..0..1..0..1
..0..0..1..1..1....0..0..1..1..1....1..0..1..0..1....1..0..1..0..1
..0..0..1..1..1....0..0..1..1..1....1..0..1..0..1....0..0..1..1..1
..0..0..1..1..1....0..1..1..1..0....0..1..1..1..0....0..1..1..1..0
..0..0..1..1..1....1..1..1..0..0....0..1..1..1..0....0..1..1..1..0
		

Crossrefs

Cf. A262319.

Formula

Empirical: a(n) = 5*a(n-1) +203*a(n-3) -1015*a(n-4) -17262*a(n-6) +86310*a(n-7) +803306*a(n-9) -4016530*a(n-10) -22920723*a(n-12) +114603615*a(n-13) +424713065*a(n-15) -2123565325*a(n-16) -5289109868*a(n-18) +26445549340*a(n-19) +45727616604*a(n-21) -228638083020*a(n-22) -289788580823*a(n-24) +1448942904115*a(n-25) +1453125527917*a(n-27) -7265627639585*a(n-28) -5836364956590*a(n-30) +29181824782950*a(n-31) +16212555187738*a(n-33) -81062775938690*a(n-34) -21276199455861*a(n-36) +106380997279305*a(n-37) -6355957095425*a(n-39) +31779785477125*a(n-40) +38763541794536*a(n-42) -193817708972680*a(n-43)

A262316 Number of (n+2)X(4+2) 0..1 arrays with each row and column divisible by 7, read as a binary number with top and left being the most significant bits.

Original entry on oeis.org

10, 27, 133, 1618, 6043, 42661, 683218, 4276587, 39384421, 511294354, 4145349211, 40383402661, 455304705490, 4148740666347, 41070560499493, 433051832901778, 4157030255637403, 41395269270386341, 423634866109163218
Offset: 1

Views

Author

R. H. Hardin, Sep 17 2015

Keywords

Comments

Column 4 of A262319.

Examples

			Some solutions for n=4
..0..1..0..1..0..1....1..1..0..0..0..1....1..1..1..1..1..1....1..1..1..0..0..0
..1..0..1..0..1..0....0..1..0..1..0..1....0..1..1..1..0..0....0..1..0..1..0..1
..1..0..0..0..1..1....0..0..0..1..1..1....0..0..0..1..1..1....0..0..1..1..1..0
..1..0..1..0..1..0....0..0..0..1..1..1....0..0..0..0..0..0....0..0..0..1..1..1
..0..1..0..1..0..1....1..0..0..0..1..1....1..0..0..0..1..1....1..0..1..0..1..0
..0..1..1..1..0..0....1..1..0..0..0..1....1..1..1..0..0..0....1..1..0..0..0..1
		

Crossrefs

Cf. A262319.

Formula

Empirical: a(n) = 13*a(n-1) -30*a(n-2) +775*a(n-3) -10075*a(n-4) +23250*a(n-5) -187265*a(n-6) +2434445*a(n-7) -5617950*a(n-8) +18375455*a(n-9) -238880915*a(n-10) +551263650*a(n-11) -585288123*a(n-12) +7608745599*a(n-13) -17558643690*a(n-14) -12851058675*a(n-15) +167063762775*a(n-16) -385531760250*a(n-17) +757921180765*a(n-18) -9852975349945*a(n-19) +22737635422950*a(n-20) -1115961555955*a(n-21) +14507500227415*a(n-22) -33478846678650*a(n-23) -69403913471776*a(n-24) +902250875133088*a(n-25) -2082117404153280*a(n-26) -67517783528000*a(n-27) +877731185864000*a(n-28) -2025533505840000*a(n-29)

A262317 Number of (n+2)X(5+2) 0..1 arrays with each row and column divisible by 7, read as a binary number with top and left being the most significant bits.

Original entry on oeis.org

19, 61, 361, 6043, 37873, 413893, 8003035, 103003837, 1659181705, 30797072443, 511038639601, 9076599454261, 167313442296139, 2990829944907421, 54803016760339465, 1017782964712240411, 18753725206393581553
Offset: 1

Views

Author

R. H. Hardin, Sep 17 2015

Keywords

Comments

Column 5 of A262319.

Examples

			Some solutions for n=4
..1..0..1..0..1..0..0....0..0..0..1..1..1..0....0..0..0..1..1..1..0
..1..1..1..0..0..0..0....0..1..1..1..1..1..1....0..1..0..0..0..1..1
..0..1..1..1..0..0..0....1..1..1..1..1..1..0....0..0..0..0..1..1..1
..0..1..0..1..0..1..0....1..1..1..0..1..1..1....0..1..1..0..0..0..1
..0..0..0..1..1..1..0....1..0..0..0..1..1..0....0..0..1..1..1..0..0
..1..0..0..0..1..1..0....0..0..0..0..1..1..1....0..1..1..1..0..0..0
		

Crossrefs

Cf. A262319.

A262318 Number of (n+2)X(6+2) 0..1 arrays with each row and column divisible by 7, read as a binary number with top and left being the most significant bits.

Original entry on oeis.org

37, 145, 1009, 42661, 413893, 7914829, 281951533, 7901300449, 257187953521
Offset: 1

Views

Author

R. H. Hardin, Sep 17 2015

Keywords

Comments

Column 6 of A262319.

Examples

			Some solutions for n=4
..0..0..1..0..1..0..1..0....1..0..0..0..1..1..0..0....0..0..0..0..0..1..1..1
..0..1..1..0..1..0..0..1....1..0..0..0..1..1..0..0....0..0..0..0..0..1..1..1
..1..1..0..0..1..0..1..1....0..0..0..0..0..0..0..0....0..0..0..0..0..1..1..1
..1..1..0..1..1..0..0..1....0..0..1..1..0..0..0..1....1..1..1..0..1..1..1..0
..1..0..0..1..1..0..1..0....0..0..1..1..0..0..0..1....1..1..1..0..1..1..1..0
..0..0..1..1..1..0..0..0....1..0..1..1..1..1..0..1....1..1..1..0..1..1..1..0
		

Crossrefs

Cf. A262319.
Showing 1-5 of 5 results.