A262320 Number of ways to select a subset s from an n-set and then partition s into blocks of equal size.
1, 2, 5, 12, 30, 73, 191, 528, 1553, 5032, 18088, 66905, 266382, 1164517, 5215645, 23868104, 117740144, 609872351, 3268548407, 18110463456, 102867877415, 620476915966, 4005216028162, 25747549921339, 166978155172421, 1168774024335204, 8556355097320142
Offset: 0
Keywords
Examples
a(3) = 12: {}, 1, 2, 3, 12, 1|2, 13, 1|3, 23, 2|3, 123, 1|2|3.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..616
Programs
-
Maple
b:= proc(n) option remember; add(1/(d!*(n/d)!^d), d=numtheory[divisors](n)) end: a:= n-> 1 + n! * add(b(k)/(n-k)!, k=1..n): seq(a(n), n=0..30);
-
Mathematica
b[n_] := b[n] = DivisorSum[n, 1/(#!*(n/#)!^#)&]; a[n_] := 1 + n! * Sum[b[k]/(n-k)!, {k, 1, n}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Dec 18 2016, after Alois P. Heinz *)