cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262320 Number of ways to select a subset s from an n-set and then partition s into blocks of equal size.

Original entry on oeis.org

1, 2, 5, 12, 30, 73, 191, 528, 1553, 5032, 18088, 66905, 266382, 1164517, 5215645, 23868104, 117740144, 609872351, 3268548407, 18110463456, 102867877415, 620476915966, 4005216028162, 25747549921339, 166978155172421, 1168774024335204, 8556355097320142
Offset: 0

Views

Author

Alois P. Heinz, Sep 17 2015

Keywords

Examples

			a(3) = 12: {}, 1, 2, 3, 12, 1|2, 13, 1|3, 23, 2|3, 123, 1|2|3.
		

Crossrefs

Partial sums of A262321.

Programs

  • Maple
    b:= proc(n) option remember;
          add(1/(d!*(n/d)!^d), d=numtheory[divisors](n))
        end:
    a:= n-> 1 + n! * add(b(k)/(n-k)!, k=1..n):
    seq(a(n), n=0..30);
  • Mathematica
    b[n_] := b[n] = DivisorSum[n, 1/(#!*(n/#)!^#)&]; a[n_] := 1 + n! * Sum[b[k]/(n-k)!, {k, 1, n}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Dec 18 2016, after Alois P. Heinz *)

Formula

E.g.f.: exp(x) * (1 + Sum_{k>=1} (exp(x^k/k!)-1)).
a(n) = 1 + Sum_{k=1..n} C(n,k) * A038041(k).
a(n) = 1 + A262280(n).
a(n) = Sum_{k=0..n} A262321(k).