cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A262364 Expansion of Product_{k>=1} (1-x^(5*k))/(1-x^(2*k)).

Original entry on oeis.org

1, 0, 1, 0, 2, -1, 3, -1, 5, -2, 6, -3, 10, -5, 13, -7, 19, -11, 25, -15, 35, -22, 45, -30, 62, -41, 79, -55, 105, -75, 134, -98, 175, -130, 220, -168, 284, -219, 355, -280, 451, -360, 561, -455, 705, -578, 870, -725, 1085, -910, 1331, -1132, 1644, -1410
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 23 2015

Keywords

Comments

In general, if m >= 1 and g.f. = Product_{k>=1} (1-x^((2*m+1)*k))/(1-x^(2*k)), then a(n) ~ (-1)^n * exp(Pi*sqrt((4*m+1)*n/(6*(2*m+1)))) * (4*m+1)^(1/4) / (2^(7/4) * 3^(1/4) * (2*m+1)^(3/4) * n^(3/4)).

Examples

			G.f. = 1 + x^2 + 2*x^4 - x^5 + 3*x^6 - x^7 + 5*x^8 - 2*x^9 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Product[(1-x^(5*k))/(1-x^(2*k)), {k, 1, nmax}], {x, 0, nmax}], x]
    CoefficientList[Series[QPochhammer[x^5]/QPochhammer[x^2], {x, 0, 60}], x]
  • PARI
    lista(nn) = {q='q+O('q^nn); Vec(eta(q^5)/eta(q^2))} \\ Altug Alkan, Mar 21 2018

Formula

a(n) ~ (-1)^n * 3^(1/4) * exp(Pi*sqrt(3*n/10)) / (2^(7/4) * 5^(3/4) * n^(3/4)).

A293003 Expansion of Product_{k>=1} (1 - x^(2*k))/(1 - x^(3*k)).

Original entry on oeis.org

1, 0, -1, 1, -1, -1, 2, -1, -2, 3, -1, -3, 5, -2, -4, 7, -3, -6, 11, -4, -9, 15, -6, -12, 21, -8, -17, 29, -11, -23, 39, -15, -31, 52, -20, -41, 70, -26, -55, 91, -35, -71, 119, -45, -92, 154, -58, -119, 198, -75, -152, 252, -95, -193, 321, -120, -245, 404, -152
Offset: 0

Views

Author

Seiichi Manyama, Oct 07 2017

Keywords

Crossrefs

Cf. A262346.

Formula

Convolution inverse of A262346.
Showing 1-2 of 2 results.