A262369 A(n,k) is the n-th prime whose decimal expansion begins with the decimal expansion of k; square array A(n,k), n>=1, k>=1, read by antidiagonals.
11, 2, 13, 3, 23, 17, 41, 31, 29, 19, 5, 43, 37, 211, 101, 61, 53, 47, 307, 223, 103, 7, 67, 59, 401, 311, 227, 107, 83, 71, 601, 503, 409, 313, 229, 109, 97, 89, 73, 607, 509, 419, 317, 233, 113, 101, 907, 809, 79, 613, 521, 421, 331, 239, 127
Offset: 1
Examples
Square array A(n,k) begins: : 11, 2, 3, 41, 5, 61, 7, 83, ... : 13, 23, 31, 43, 53, 67, 71, 89, ... : 17, 29, 37, 47, 59, 601, 73, 809, ... : 19, 211, 307, 401, 503, 607, 79, 811, ... : 101, 223, 311, 409, 509, 613, 701, 821, ... : 103, 227, 313, 419, 521, 617, 709, 823, ... : 107, 229, 317, 421, 523, 619, 719, 827, ... : 109, 233, 331, 431, 541, 631, 727, 829, ...
Links
Crossrefs
Programs
-
Maple
u:= (h, t)-> select(isprime, [seq(h*10^t+k, k=0..10^t-1)]): A:= proc(n, k) local l, p; l:= proc() [] end; p:= proc() -1 end; while nops(l(k))
-
Mathematica
u[h_, t_] := Select[Table[h*10^t + k, {k, 0, 10^t - 1}], PrimeQ]; A[n_, k_] := Module[{l, p}, l[] = {}; p[] = -1; While[Length[l[k]] < n, p[k] = p[k]+1; l[k] = Join[l[k], u[k, p[k]]]]; l[k][[n]]]; Table[Table[A[n, 1+d-n], {n, 1, d}], {d, 1, 12}] // Flatten (* Jean-François Alcover, Dec 06 2019, from Maple *)