A262372 Number T(n,k) of ordered pairs (p,q) of permutations of [n] with equal up-down signatures and p(1)=q(1)=k if n>0; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 1, 1, 0, 2, 2, 2, 0, 10, 8, 8, 10, 0, 88, 68, 64, 68, 88, 0, 1216, 952, 852, 852, 952, 1216, 0, 24176, 19312, 17008, 16328, 17008, 19312, 24176, 0, 654424, 533544, 467696, 438496, 438496, 467696, 533544, 654424
Offset: 0
Examples
T(4,1) = 10: (1234,1234), (1243,1243), (1243,1342), (1324,1324), (1324,1423), (1342,1243), (1342,1342), (1423,1324), (1423,1423), (1432,1432). T(4,2) = 8: (2134,2134), (2143,2143), (2314,2314), (2314,2413), (2341,2341), (2413,2314), (2413,2413), (2431,2431). T(4,3) = 8: (3124,3124), (3142,3142), (3142,3241), (3214,3214), (3241,3142), (3241,3241), (3412,3412), (3421,3421). T(4,4) = 10: (4123,4123), (4132,4132), (4132,4231), (4213,4213), (4213,4312), (4231,4132), (4231,4231), (4312,4213), (4312,4312), (4321,4321). Triangle T(n,k) begins: 1 0, 1; 0, 1, 1; 0, 2, 2, 2; 0, 10, 8, 8, 10; 0, 88, 68, 64, 68, 88; 0, 1216, 952, 852, 852, 952, 1216; 0, 24176, 19312, 17008, 16328, 17008, 19312, 24176; ...
Links
- Alois P. Heinz, Rows n = 0..100, flattened
Crossrefs
Programs
-
Maple
b:= proc(u, o, h) option remember; `if`(u+o=0, 1, add(add(b(u-j, o+j-1, h+i-1), i=1..u+o-h), j=1..u)+ add(add(b(u+j-1, o-j, h-i), i=1..h), j=1..o)) end: T:= (n, k)-> `if`(k=0, `if`(n=0, 1, 0), b(k-1, n-k, n-k)): seq(seq(T(n, k), k=0..n), n=0..10);
-
Mathematica
b[u_, o_, h_] := b[u, o, h] = If[u + o == 0, 1, Sum[b[u - j, o + j - 1, h + i - 1], {i, 1, u + o - h}, {j, 1, u}] + Sum[b[u + j - 1, o - j, h - i], {i, 1, h}, {j, 1, o}]]; T[n_, k_] := If[k == 0, If[n == 0, 1, 0], b[k - 1, n - k, n - k]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 05 2019, after Alois P. Heinz *)