cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A262358 Inverse permutation to A262356.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 26, 13, 28, 30, 31, 35, 39, 43, 47, 51, 55, 15, 32, 38, 60, 61, 63, 65, 67, 69, 71, 17, 36, 42, 62, 77, 78, 80, 82, 84, 86, 19, 40, 46, 64, 79, 89, 90, 92, 94, 96, 21, 44, 50, 66, 81, 91, 99, 100
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 19 2015

Keywords

Comments

A262377 and A262377 give primes and where they occur: A262377(n)=a(A262378(n)).

Crossrefs

Cf. A262356, A262360 (fixed points), A262377 (primes), A262378.

Programs

  • Haskell
    import Data.List (elemIndex); import Data.Maybe (fromJust)
    a262358 = (+ 1) . fromJust . (`elemIndex` a262356_list)
  • Mathematica
    terms = 100;
    (* b = A262356 *) b[1] = 1; b[n_] := b[n] = Module[{s, k}, s = Rest[ IntegerDigits[b[n-1]]] //. {(0).., d__} :> {d}; For[k = 2, True, k++, If[FreeQ[Array[b, n-1], k], If[s == {0}, Return[k], If[IntegerDigits[ k][[1 ;; Length[s]]] == s, Return[k]]]]]];
    Sort[Table[{b[n], n}, {n, 1, 2 terms}]][[1 ;; terms, 2]] (* Jean-François Alcover, Mar 12 2019 *)

A262377 Primes in A262358.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 31, 43, 47, 61, 67, 71, 17, 19, 79, 89, 23, 83, 101, 107, 103, 109, 113, 97, 29, 37, 41, 53, 127, 137, 157, 167, 251, 257, 269, 281, 419, 359, 431, 353, 439, 59, 73, 163, 313, 331, 373, 659, 709, 761, 701, 857, 877, 883, 941, 971, 977
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 20 2015

Keywords

Comments

a(n) = A262358(A262378(n));
a permutation of the prime numbers, cf. A262363.

Crossrefs

Programs

  • Haskell
    a262377 n = a262377_list !! (n-1)
    a262377_list = filter ((== 1) . a010051') $ map a262358 [1..]
Showing 1-2 of 2 results.