cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262380 Expansion of Product_{k>=1} 1/((1+x^k)*(1-x^k)^4).

Original entry on oeis.org

1, 3, 10, 25, 62, 136, 293, 590, 1165, 2205, 4097, 7391, 13120, 22780, 38997, 65613, 109036, 178660, 289575, 463842, 735870, 1155717, 1799620, 2777795, 4254859, 6467115, 9761770, 14633605, 21799465, 32273399, 47506759, 69537814, 101252595, 146675875, 211451893
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 20 2015

Keywords

Comments

In general, if m > 1 and g.f. = Product_{k>=1} 1/((1+x^k)*(1-x^k)^m), then a(n) ~ exp(sqrt((2*m-1)*n/3)*Pi) * (2*m-1)^((m+1)/4) / (2^(m+1) * 3^((m+1)/4) * n^((m+3)/4)).

Crossrefs

Cf. A002513 (m=2), A029863 (m=3), A261998.

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/((1 + x^k)*(1 - x^k)^4), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(sqrt(7*n/3)*Pi) * 7^(5/4) / (32 * 3^(5/4) * n^(7/4)).